DEMAND PLANNING/ FORECASTING

• The truth about forecasting and suggestions

Truth	Suggestions	
1. The forecast is "always" wrong	Range forecasting	
Statistical errors	Flexible contracts	
Difference between past and future		
2. Aggregated forecasts are more accurate	Risk pooling	
	 product distribution 	
	○ parts	
	 product variety 	
3. Forecasts over short time horizon are	Postponement	
more accurate	Concurrent process	
4. Long history helps	Test sales to create history	
5. Trading partner have information	Collaboration/ tightening	
6. Risk sharing can mitigate the	Joint new product development	
consequences	Joint ventures	
	Supply contract	

• 4 fundamental approaches

Subjective	Objective	
1. Judgmental	3. Time series	
Sales force survey	"Black Box" approach	
Jury of experts	Uses past to predict future	
2. Experimental	4. Causal/ Relational	
Customer surveys/ Focus group	Econometric model	
Test marketing	Leading indicators	
Simulation	Input – Output	
	Run regressions!	

• Time Series

Good for	Bad for	
Short term	New or dying products	
Mature products	Short life-cycle products	
SKU level	Erratic sparse demand	

• Variables

- Level (a)
- Trend (b)
- Seasonality variations (F)
- Cyclical movements (c)
- Random fluctuations
- o Methods
 - Moving Average
 - Exponential Smoothing value of observation degrades overtime
 - $X_{t, t+1} = \alpha X_t + (1-\alpha) X_{t-1, t} 0.01 < \alpha < 0.3 (\approx 0.1)$
 - Level and Trend
 - $X_{t, t+1} = a_t + tb_t$

- $a_t = \alpha X_t + (1 \alpha)(a_{t-1} + b_{t-1})$ 0.02< α <0.51 (\approx 0.19)
- $b_t = \beta(a_t a_{t-1}) + (1 \beta)b_{t-1}$ 0.005< β <0.176 (\approx 0.053)
- Level, Trend and Seasonal
 - $X_{t,t+T} = (a_t + Tb_t) F_{t+T-p}$
 - $a_t = \alpha(X_t / F_{t-p}) + (1-\alpha)(a_{t-1} + b_{t-1})$
 - $b_t = \beta(a_t a_{t-1}) + (1 \beta)b_{t-1}$ 0.005< β <0.176 (\approx 0.053)
 - $F_t = \gamma(X_t / a_t) + (1 \gamma) F_{t-p}$ 0.05< γ <0.5 (\approx 0.1)
- Forecast Evaluation
 - Accuracy

•	Forecast Error	$e_t = X_t - X_t$
---	----------------	-------------------

- Mean Deviation $MD = \sum e_t/n$
- Mean Absolute Deviation MAD = $\sum |e_t|/n$
- Mean Squared Error MSE = $\sum_{i=1}^{n} e_{i}^{2}/n$
- Root Mean Squared Error RMSE = $sqrt(\sum e^2 t/n)$
- Mean Absolute Percent Error MAPE = $\sum (|e_t|/D_t)/n$
- o Bias
 - Cumulative Sum of Error (Ct) ...normalized by dividing by RMSE
 - Smoothed Error Tracking Signal \dots T_t = z_t/MAD_t, where z_t = we_t + (1-w)z_{t-1}
 - Auto Correlation of Forecast Errors

INVENTORY PLANNING & MANAGEMENT

- Why Hold Inventory
 - Buffer for demand/ supply spikes
 - Minimize cost (ordering, shortage)
 - Speculation/ Anticipation for purchasing price change
 - Cover process time
- Inventory Decisions = Supply chain decision + Deployment decision + Replenishment decision
- Inventory Fundamentals
 - TC = Purchase + Ordering + Holding + Shortage

vD + A(D/Q) + (Q/2+k\sigma)vr + B₁(D/Q)P_{u \geq (k)} or B₂(D/Q)v\sigma_LG_{u(k)}

- Variables
 - D = Ave demand (units/ unit time)
 - A = Fixed ordering cost (\$/ order)
 - v = Variable cost purchase, shipping (\$/ unit)

- r = Carrying (\$/ \$ held/ time)
- Q = Replenishment order quantity (units/ order)
- EOQ (Economic Order Quantity)
 - o Basic Model
 - EOQ = sqrt (2AD/ vr), TRC[EOQ] = sqrt (2Advr)
 - \circ w/ order leadtime <u>L</u> ... Order EOQ when IOH = DL (refer to (R, S) policy)
 - o w/ finite replenishment inventory becomes available at rate of m units/ time
 - TRC[Q] = A(D/Q) + Q(1-D/m)vr/ 2
 - EOQ = sqrt (2AD/ vr(1-D/m))
 - \circ w/ multiple locations <u>n</u> locations
 - EOQ = sqrt (2AD/ vrn), IOH = sqrt(n)*Q/2
 - o w/ all unit discount
 - if $Q>Q_b$, $v = v_0(1-d)$, otherwise $v = v_0$
 - if $Q>Q_b$, TRC = $Dv_0(1-d) + A(D/Q) + v_0(1-d)rQ/2$
 - o w/ incremental discount
 - 4 Steps
 - 1. Find Fixed Cost per breakpoint, F_i, for each break
 - 2. Find EOQ_i for each range... EOQ = sqrt (2D(A+F_i)/ rv_i)
 - 3. If EOQ_i is not within allowable range, go to next I. Otherwise, find TRC_i using effective cost per unit, v_{ei}
 - 4. Pick EOQ_i with lowest TRC
 - $F_i = F_{i-1} + (v_{i-1} v_i)Q_i$, $F_0 = 0$
- Stock Out Cost
 - E[Unit Short]/ cycle = $\sigma_{L+R} G_{(k)}$
 - Cost minimization perspective
 - B1: Cost per stock out <u>event</u> (\$/ event)

- Stock out cost = $B_1(D/Q)P_{u \ge (k)}$
- K = sqrt(2ln*(DB₁/ sqrt(2 π)Qvr σ_L))
- B2: Cost per stock out <u>item</u> (% of v)
 - Stock out cost = $B_2(D/Q)v\sigma_LG_{u(k)}$
 - $P_{u\geq(k)} = Qr/DB_2$
- o Service level maximization perspective
 - P₁: CSL (Cycle Service Level)
 - Probability of no stock outs per replenishment cycle
 - CSL = 1- P_{u≥(k)}
 - P₂: IFR (Item Fill Rate)
 - Fraction of demand filled from IOH (usually much higher than CSL for given ss)
 - When 100% back order, IFR = $1 \sigma_L G_{(k)}/Q$, $G_{(k)} = Q/\sigma_L(1 IFR)$
 - IFR = (Q- E[Unit Short])/ Q
 - E[Unit Short] = $1 \sigma_L G_{(k)}/Q$
 - When lost sales, IFR = Q/(Q+ $\sigma_L G_{(k)}$), G(k) = Q/ $\sigma_L^*(1 IFR)/IFR$

SS	k	P _{u≥(k)}	G _(k)
1	1	\downarrow	\downarrow
\downarrow	\downarrow	1	\uparrow

Inventory Policy & Item Type

Item Type	Continuous Review	Periodic Review
A	(s, S)	(R, s, S)
В	(s, Q)	(R, S)
С		Manual ~ (R, S)

o **B Item**

- (s, Q) policy
 - Q= EOQ
 - s (reordering point) = X_L (cycle stock) + $k\sigma_L$ (safety stock)
 - \circ k = ss factor implies service level and stock out cost

- \circ σ_L = RMSE of demand forecast errors (or stdv of demand)
- (R, S) policy
 - Q=DR
 - $s=S=X_{L+R}+k\sigma_{L+R}$
 - Ordering cost = A/R ...e.g. if R=1month and A is X units/ yr, 12X
- A Item
 - Fast Moving ...small v, large Q
 - Solve k* and Q* simultaneously
 - $\circ \quad Q^* = EOQ^* sqrt(1 + B_1 P_{u \ge (k)}/A)$
 - $K^* = \operatorname{sqrt}(2\ln^*(DB_1/\operatorname{sqrt}(2\pi)\operatorname{Qvr}\sigma_L))$
 - Policy = (s, S) or (R, s, S)
 - Slow Moving …large v, Q=1
 - $E[\text{Unit Short}] = (1-IFR)\lambda \dots Poisson Distribution$
 - $L(X_0) = \lambda$ => $L(X_1) = L(X_0) (X_1 X_0)(1 F(X_0))$
- C Item
 - Periodic review rather than continuous
 - Look to reduce the number of orders (synchronize R across SKUs)
 - Decision rule: how much for disposal = IOH EOQ D(v-salvage)/(vr)
- News Vendor Model
 - Variables
 - R = Retail price
 - W = Whole sale price (= cost for retailer)
 - C = Cost (= manufacturer price)
 - S = Salvage cost
 - B = Penalty for not covering demand

- o Optimal order for each players
 - Retailer's perspective
 - Critical ratio = P(Demand $\leq Q_R^*$) = (R-W+B)/(R-S+B)
 - Find k as $P_{u\geq (k)} = (W-S)/(R-S+B)$
 - Q_R* = E[D] + kσ_D
 - E[Profit] = $R^*E[D] + S^*E[Unsold] R\sigma_DG(k) C^*Q$

=
$$(R-S)E[D] - (C-S)Q - (R-S)\sigma_DG((Q-E[D])/\sigma_D)$$

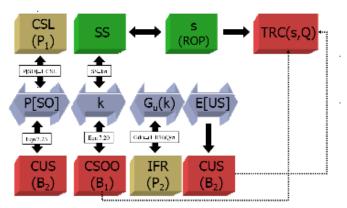
- Whole seller's perspective
 - D = Q_R
 - E[Profit] = (W-C) Q_R
- Channel's perspective
 - Critical ratio = P(Demand $\leq Q_{C}^{*}$) = (R-C+B)/(R-S+B)
- Procurement contracts for optimization
 - Buyback contract set buyback price <u>P</u> so as to have Q_R* = Q_C*

⇒ (R-W)/(R-<u>P</u>) = (R-C)/(R-S)

$$\Rightarrow$$
 P = W(R-S)/(R-C) - R(C-S)/(R-C)

Revenue Share – set <u>p</u> so as to have Q_R* = Q_C*

$$\Rightarrow p = W(R-S)/(R(C-S)) - S(R-C)/(R(C-S))$$



Safety Stock Logic (given x1, σ1, A,D, v, r, & Q)

TRANSPORTATION DESIGN, PROCUREMENT & MANAGEMENT

- Transportation Fundamentals
 - Type of network
 - Physical network
 - Operational network
 - Strategic network
 - Transportation products
 - 4 primary transportation components
 - Loading/ unloading
 - Line-haul
 - Local-routing
 - Sorting
 - 3 driving influences
 - Economies of scale
 - Economies of scope ... balance, utilization of return trip
 - Economies of density ... ave d_{stop}
- Implication of Leadtime Variability to (s, Q)
 - \circ When transportation leadtime is N(E[L], σ_L)
 - E[D_{leadtime}] = E[L]*E[D]
 - $\sigma_{\text{leadtime}} = \text{sqrt}(\text{E}[\text{L}]^* \sigma_D^2 + \text{E}[D]^{2*} \sigma_L^2)$
 - then $s = E[D_{\text{leadtime}}] + k\sigma_{\text{leadtime}}$
 - \circ When transportation leadtime is uniform distribution from L₁ ~ L₂, w/ mean E[L]
 - $E[D_{leadtime}] = E[L]*E[D]$
 - $\sigma_{\text{leadtime}} = \text{sqrt}(\text{E}[\text{L}]^* \sigma_{\text{D}}^2 + \text{E}[\text{D}]^{2*} \sigma_{\text{L}}^2)$, where $\sigma_{\text{L}}^2 = (\text{L}_2 \text{L}_1)^2 / 12$
- Total Cost with Transportation
 - TC = CT(transportation) + CH(handling) + CS(storage) + CI(inventory holding)

- One to One System
 - Total CPI (Cost per item) = $rv(T/2 + L) + C_s(1+n_s)/Q + C_d(d/Q) + C_{vs}$
 - T = shipping frequency = D/Q
 - L = leadtime for transportation (yr)
 - d = distance
 - n_s = # of stops
 - C_s = fixed \$/ stop
 - C_d = \$/ distance
 - C_{vs} = marginal cost/ item/ stop
- One to Many System
 - Local transportation part
 - $E[d_{local}] \approx k^* sqrt(nX)$, where
 - X = area
 - \circ k = 0.7124 if n>25 and on Euclidean space (e.g. sky, sea)
 - k = 0.765 if grid (e.g. road)
 - Density $\delta = n/X$
 - Ave $d_{stop} = E[d_{local}]/n = k/sqrt(\delta)$
 - Total transportation
 - $E[d_{AIITour}] = 2Id_{LineHaul} + nk/ sqrt(\delta)$
 - \circ I = # of tours