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Abstract: The common sense on the division by zero with a long and
mysterious history is wrong and our basic idea on the space around the point
at infinity is also wrong since Euclid. On the gradient or on derivatives we
have a great missing since tan(π/2) = 0. Our mathematics is also wrong in
elementary mathematics on the division by zero. In this book, we will show
and give various applications of the division by zero 0/0 = 1/0 = z/0 = 0. In
particular, we will introduce several fundamental concepts on calculus, Eu-
clidian geometry, analytic geometry, complex analysis and differential equa-
tions. We will see new properties on the Laurent expansion, singularity,
derivative, extension of solutions of differential equations beyond analytical
and isolated singularities, and reduction problems of differential equations.
On Euclidean geometry and analytic geometry, we will find new fields by the
concept of the division by zero. We will collect many concrete properties in
the mathematical sciences from the viewpoint of the division by zero. We
will know that the division by zero is our elementary and fundamental math-
ematics.
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Preface

The division by zero has a long and mysterious story over the world
(see, for example, H. G. Romig [49] and Google site with the division by
zero) with its physical viewpoints since the document of zero in India on AD
628. In particular, note that Brahmagupta (598 -668 ?) established the four
arithmetic operations by introducing 0 and at the same time he defined as
0/0 = 0 in Brhmasphuasiddhnta. Our world history, however, stated that
his definition 0/0 = 0 is wrong over 1300 years, but, we will see that his
definition is right and suitable.

The division by zero 1/0 = 0/0 = z/0 itself will be quite clear and trivial
with several natural extensions of the fractions against the mysterously long
history, as we can see from the concepts of the Moore-Penrose generalized
inverses or the Tikhonov regularization method to the fundamental equation
az = b, whose solution leads to the definition z = b/a.

However, the result (definition) will show that for the elementary mapping

W =
1

z
, (0.1)

the image of z = 0 is W = 0 (should be defined from the form). This
fact seems to be a curious one in connection with our well-established popular
image for the point at infinity on the Riemann sphere ([2]). As the repre-
sentation of the point at infinity of the Riemann sphere by the zero z = 0,
we will see some delicate relations between 0 and ∞ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We did not
consider any value of the elementary function W = 1/z at the origin z = 0,
because we did not consider the division by zero 1/0 in a good way. Many
and many people consider its value by the limiting like +∞ and −∞ or the
point at infinity as ∞. However, their basic idea comes from continuity
with the common sense or based on the basic idea of Aristotle. – For the
related Greece philosophy, see [65, 66, 67]. However, as the division by zero
we will consider its value of the function W = 1/z as zero at z = 0. We will
see that this new definition is valid widely in mathematics and mathematical
sciences, see ([29, 37]) for example. Therefore, the division by zero will give
great impacts to calculus, Euclidean geometry, analytic geometry, differen-
tial equations, complex analysis in the undergraduate level and to our basic
ideas for the space and universe.

We have to arrange globally our modern mathematics in our undergrad-
uate level. Our common sense on the division by zero will be wrong, with
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our basic idea on the space and the universe since Aristotle and Euclid. We
would like to show clearly these facts in this book. The content is in the
undergraduate level.

Kiryu, Japan Saburou Saitoh
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1 Introduction

By a natural extension of the fractions

b

a
(1.1)

for any complex numbers a and b, we found the simple and beautiful result,
for any complex number b

b

0
= 0, (1.2)

incidentally in [53] by the Tikhonov regularization for the Hadamard product
inversions for matrices, and we discussed their properties and gave several
physical interpretations on the general fractions in [24] for the case of real
numbers. The result is a very special case for general fractional functions in
[12].

The division by zero has a long and mysterious story over the world
(see, for example, H. G. Romig [49] and Google site with the division by
zero) with its physical viewpoints since the document of zero in India on AD
628. In particular, note that Brahmagupta (598 -668?) established the four
arithmetic operations by introducing 0 and at the same time he defined as
0/0 = 0 in Brhmasphuasiddhnta. Our world history, however, stated that
his definition 0/0 = 0 is wrong over 1300 years, but, we will see that his
definition is right and suitable.

Indeed, we will show typical examples for 0/0 = 0. However, in this
introduction, these examples are based on some natural feelings and are not
mathematics, because we do still not give the definition of 0/0. However,
following our new mathematics, these examples may be accepted as natural
ones later:

The conditional probability P (A|B) for the probability of A under the
condition that B happens is given by the formula

P (A|B) =
P (A ∩B)

P (B)
.

If P (B) = 0, then, of course, P (A∩B) = 0 and from the meaning, P (A|B) =
0 and so, 0/0 = 0.

For the representation of inner product in vectors

cos θ =
A ·B
AB
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=
AxBx + AyBy + AzBz√

A2
x + A2

y + A2
z

√
B2

x +B2
y +B2

z

,

if A or B is the zero vector, then we see that 0 = 0/0. In general, the zero
vector is orthogonal for any vector and then, cos θ = 0.

For this paragraph for our old version, Professor J. Czajko gave kindly
the detailed comments following his some general idea for the division by
zero under the multispatial reality paradigm and stated in the last part:

As one can see, the single-space reality paradigm, which is unspoken of in
the former mathematics and physics, creates tacitly evaded inconsistencies
even at the logical level of mathematical reasonings.

Dieudonne ([17]) has also tentatively assumed xy = 0 wherever one of the
variables is 0 and the other ∞ [*], which is similar to 0/0 = 0. Besides, if
your formula (1.2) would be rendered as b/0 = 0 + i0 then it might lead one
to question whether or not the still reigning single-space reality paradigm is
admissible in general.

[*] Dieudonn J. Treatise on analysis II. NewYork: Academic Press, 1970,
p.151.

Look his basic great references, [14, 15].

For the differential equation

dy

dx
=

2y

x
,

we have the general solution with constant C

y = Cx2.

At the origin (0, 0) we have

y′(0) =
0

0
= 0.

For three points a, b, c on a circle with center at the origin on the complex
z-plane with radius R, we have

|a+ b+ c| = |ab+ bc+ ca|
R

.

If R = 0, then a, b, c = 0 and we have 0 = 0/0.
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For a circle with radius R and for an inscribed triangle with side lengths
a, b, c, and further for the inscribed circle with radius r for the triangle, the
area S of the triangle is given by

S =
r

2
(a+ b+ c) =

abc

4R
. (1.3)

If R = 0, then we have

S = 0 =
0

0
(1.4)

(H. Michiwaki: 2017.7.28.).
For the second curvature

K2 =
(
(x′′)2 + (y′′)2 + (z′′)2

)−1 ·

∣∣∣∣∣∣
x′ y′ z′

x′′ y′′ z′′

x′′′ y′′′ z′′′

∣∣∣∣∣∣ , (1.5)

if (x′′)2 + (y′′)2 + (z′′)2 = 0; that is, when for the case of lines, then 0 = 0/0.
For the function sign x = x/|x|, we have, automatically, sign x = 0 at

x = 0.
We have furthermore many and concrete examples as we will see in this

book.
However, we do not know the reason and motivation of the definition of

0/0 = 0 by Brahmagupta, furthermore, for the important case 1/0 we do not
know any result there. – Indeed, we find many and many wrong logics on
the division by zero, without the definition of the division by zero z/0. How-
ever, Sin-Ei Takahasi ([24]) discovered a simple and decisive interpretation
(1.2) by analyzing the extensions of fractions and by showing the complete
characterization for the property (1.2):

Proposition 1. Let F be a function from C×C to C satisfying

F (b, a)F (c, d) = F (bc, ad)

for all
a, b, c, d ∈ C

and

F (b, a) =
b

a
, a, b ∈ C, a ̸= 0.
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Then, we obtain, for any b ∈ C

F (b, 0) = 0.

Note that the complete proof of this proposition is simply given by 2
or 3 lines, as we will give its complete proof later. In order to confirm
the uniqueness result by Professor Takahasi, Professor Matteo Dalla Riva
gave the proposition independently of Professor Takahasi as stated in ([24]).
Indeed, when the Takahasi’s result was informed, he was first negative for
the Takahasi uniqueness theorem.

In the long mysterious history of the division by zero, this proposition
seems to be decisive. Since the paper had been published over fully four
years ago, but we see still curious information on the division by zero and we
see still many wrong opinions on the division by zero with confusions.

Indeed, the Takahasi’s assumption for the product property should be
accepted for any generalization of fraction (division). Without the product
property, we will not be able to consider any reasonable fraction (division).

Following the proposition, we should define

F (b, 0) =
b

0
= 0,

and consider, for any complex number b, as (1.2); that is, for the mapping

W =
1

z
, (1.6)

the image of z = 0 is W = 0 (should be defined from the form). This
fact seems to be a curious one in connection with our well-established popular
image for the point at infinity on the Riemann sphere ([2]). As the repre-
sentation of the point at infinity of the Riemann sphere by the zero z = 0,
we will see some delicate relations between 0 and ∞ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We did not
consider any value of the elementary function W = 1/z at the origin z = 0,
because we did not consider the division by zero 1/0 in a good way. Many
and many people consider its value by the limiting like +∞ and −∞ or the
point at infinity as ∞. However, their basic idea comes from continuity
with the common sense or based on the basic idea of Aristotle. – For the
related Greece philosophy, see [65, 66, 67]. However, as the division by zero
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we will consider its value of the function W = 1/z as zero at z = 0. We will
see that this new definition is valid widely in mathematics and mathematical
sciences, see ([29, 37]) for example. Therefore, the division by zero will give
great impacts to calculus, Euclidian geometry, analytic geometry, complex
analysis and the theory of differential equations in an undergraduate level
and furthermore to our basic ideas for the space and universe.

Meanwhile, the division by zero (1.2) was derived from several indepen-
dent approaches as in:

1) by the generalization of the fractions by the Tikhonov regularization
or by the Moore-Penrose generalized inverse to the fundamental equation
az = b that leads to the definition of the fraction z = b/a,

2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

3) by the unique extension of the fractions by S. Takahasi, as in the above,

4) by the extension of the fundamental function W = 1/z from C \ {0}
into C such that W = 1/z is a one to one and onto mapping from C \ {0}
onto C \ {0} and the division by zero 1/0 = 0 is a one to one and onto
mapping extension of the function W = 1/z from C onto C,

and

5) by considering the values of functions with the mean values of func-
tions.

Furthermore, in ([28]) we gave the results in order to show the reality of
the division by zero in our world:

A) a field structure as the number system containing the division by zero
— the Yamada field Y,

B) by the gradient of the y axis on the (x, y) plane — tan π
2
= 0,

C) by the reflection W = 1/z of W = z with respect to the unit circle
with center at the origin on the complex z plane — the reflection point of
zero is zero, (The classical result is wrong, see [37]),

and

D) by considering rotation of a right circular cone having some very in-
teresting phenomenon from some practical and physical problem.

Furthermore, in ([29],[53]), we discussed many division by zero proper-
ties in the Euclidean plane - however, precisely, our new space is not the
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Euclidean space. In ([25]), we gave beautiful geometrical interpretations of
determinants from the viewpoint of the division by zero. More recently, we
see the great impact to Euclidian geometry in connection with Wasan in
([38, 39, 41]).

We recall the recent papers on the division by zero.
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker [8] and J. A. Bergstra [9]

discussed the the relationship between fields and the division by zero, and
the importance of the division by zero for computer science. It seems that
the relationship of the division by zero and field structures are abstract in
their papers.

Meanwhile, Carlstrm ([10]) introduced the wheel theory; wheels are a
type of algebra where division is always defined. In particular, division by
zero is meaningful. The real numbers can be extended to a wheel, as can
any commutative ring. The Riemann sphere can also be extended to a wheel
by adjoining an element ⊥, where 0/0 = ⊥. The Riemann sphere is an
extension of the complex plane by an element ∞, where z/0 = ∞ for any
complex z ̸= 0. However, 0/0 is still undefined on the Riemann sphere,
but is defined in its extension to a wheel. The term wheel is introduced by
the topological picture ⊙ of the projective line together with an extra point
⊥ = 0/0.

Similarly, T.S. Reis and J.A.D.W. Anderson ([47, 48]) extends the sys-
tem of the real numbers by defining division by zero with three infinities
+∞,−∞,Φ (Transreal Calculus).

However, we can introduce simply a very natural field containing the
division by zero that is a natural extension (modification) of our mathematics,
as the Yamada field.

In connection with the deep problem with physics of the division by zero
problem, see J. Czajko [14, 15, 16]. However, we will be able to find many
logical confusions in the papers, as we refer to the details later.

J. P. Barukcic and I. Barukcic ([6]) discussed the relation between the
division 0/0 and special relative theory of Einstein. However it seems that
their result is curious with their logics. Their results contradict with ours.

L.C. Paulson stated that I would guess that Isabelle has used this con-
vention 1/0 = 0 since the 1980s and introduced his book [34] referred to this
fact. However, in his group the importance of this fact seems to be entirely
ignored at this moment as we see from the book.

For the recent great works, see E. Jebek and B. Santangelo [22, 56]. They
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stated in their abstracts of their papers as follows: :

E. Jebek [22]:
For any sufficiently strong theory of arithmetic, the set of Diophantine

equations provably unsolvable in the theory is algorithmically undecidable,
as a consequence of the MRDP theorem. In contrast, we show decidability
of Diophantine equations provably unsolvable in Robinson’s arithmetic Q.
The argument hinges on an analysis of a particular class of equations, hith-
erto unexplored in Diophantine literature. We also axiomatize the universal
fragment of Q in the process.

B. Santangelo [56]:
The purpose of this paper is to emulate the process used in defining and

learning about the algebraic structure known as a Field in order to create a
new algebraic structure which contains numbers that can be used to define
Division By Zero, just as i can be used to define

√
−1.

This method of Division By Zero is different from other previous attempts
in that each α

0
has a different unique, numerical solution for every possible

α, albeit these numerical solutions are not any numbers we have ever seen.
To do this, the reader will be introduced to an algebraic structure called
an S-Structure and will become familiar with the operations of addition,
subtraction, multiplication and division in particular S-Structures. We will
build from the ground up in a manner similar to building a Field from the
ground up. We first start with general S-Structures and build upon that
to S-Rings and eventually S-Fields, just as one begins learning about Fields
by first understanding Groups, then moving up to Rings and ultimately to
Fields. At each step along the way, we shall prove important properties of
each S-Structure and of the operations in each of these S-Structures. By the
end, the reader will become familiar with an S-Field, an S-Structure which
is an extension of a Field in which we may uniquely define α/0 for every
non-zero α which belongs to the Field. In fact, each α

0
has a different, unique

solution for every possible α. Furthermore, this Division By Zero satisfies
α/0 = q such that 0 · q = α, making it a true Division Operation,

Meanwhile, we should refer to up-to-date information:

Riemann Hypothesis Addendum - Breakthrough Kurt Arbenz :
https://www.researchgate.net/publication/272022137 Riemann Hypoth-

esis Addendum - Breakthrough.

Here, we recall Albert Einstein’s words on mathematics:
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Blackholes are where God divided by zero. I don’t believe in mathemat-
ics. George Gamow (1904-1968) Russian-born American nuclear physicist
and cosmologist remarked that ”it is well known to students of high school
algebra” that division by zero is not valid; and Einstein admitted it as the
biggest blunder of his life (Gamow, G., My World Line (Viking, New
York). p 44, 1970).

We have still curious situations and opinions on the division by zero; in
particular, the two great challengers Jakub Czajko [15] and Ilija Barukcic [7]
on the division by zero in connection with physics stated recently that we do
not have the definition of the division 0/0, however 0/0 = 1. They seem to
think that a truth is based on physical objects and is not on our mathematics.
In such a case, we will not be able to continue discussions on the division
by zero more, because for mathematicians, they will not be able to follow
their logics more. However, then we would like to ask for the question that
what are the values and contributions of your articles and discussions. We
will expect some contributions, of course.

This question will reflect to mathematicians contrary. We stated for the
estimation of mathematics in [46]: Mathematics is the collection of relations
and, good results are fundamental, beautiful, and give good impacts to hu-
man beings.

With this estimation, we stated that the Euler formula

eπi = −1

is the best result in mathematics in details in:

No.81, May 2012(pdf 432kb) www.jams.or.jp/kaiho/kaiho-81.pdf

In order to show the importance of our division by zero and division by
zero calculus we are requested to show their importance. However, with the
results stated in the references and in this book, we think the importance of
our division by zero may be definitely stated clearly.

It seems that the long and mysterious confusions for the division by zero
were on the definition. – Indeed, when we consider the division by zero a/0
in the usual sense as the solution of the fundamental equation 0 · z = a, we
have immediately the simple contradiction for a ̸= 0, however, such cases 0/0
and 1/0 may happen, in particular, in mathematical formulas and physical
formulas. The typical example is the case of x = 0 for the fundamental
function y = 1/x.
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– As we stated in the above, some researchers considered that for the
mysterious objects 0/0 and 1/0, they considered them as ideal numbers as
in the imaginary number i from its great success. However, such an idea will
not be good as the number system, as we see simply from the concept of the
Yamada field containing the division by zero.

Another important fact was discontinuity for the function y = 1/x at
the origin. Indeed, by the concept of the Moore-Penrose generalized solution
of the fundamental equation ax = b, the division by zero was trivial and
clear all as a/0 = 0 in the general fraction which is defined by the generalized
solution of the equation ax = b. However, for the strong discontinuity of the
function y = 1/x at the origin, we were not able to accept the result a/0 = 0
for very long years.

As the number system containing the division by zero, the Yamada field
structure is simple and complete. However for the applications of the division
by zero to functions, we will need the concept of division by zero calculus
for the sake of uniquely determinations of the results and for other reasons.

In this book, we will discuss the division by zero in calculus and Euclidian
geometry and introduce various applications to differential equations and
others, and we will be able to see that the division by zero is our elementary
and fundamental mathematics.

In order to realize our long and wrong basic ideas for the point at infinity
and the mirror image with respect to a circle, we refer to the properties of
the stereographic projection and the mirror image in details in Sections 3
and 4.

This book is an extension of the sourse file ([45]) of the invited and
plenary lecture presented at the International Conference – Differential and
Difference Equations with Applications:

https://sites.google.com/site/sandrapinelas/icddea-2017

In this book, we would like to present clearly the conclusion of the talk:

The division by zero is uniquely and reasonably determined as

1/0 = 0/0 = z/0 = 0

in the natural extensions of fractions.

We have to change our basic ideas for our space and world.
We have to change globally our textbooks and scientific books on the divi-

sion by zero.
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2 Introduction and definitions of general frac-

tions

We first introduce several definitions of our general fractions containing the
division by zero. This section will give the strong and natural background
for our division by zero.

2.1 By the Tikhonov regularization

For any real numbers a and b containing 0, we will introduce general fractions

b

a
. (2.1)

We will think that for the fraction (2.1), it will be given by the solution
of the equation

ax = b.

Here, in order to see its essence, we will consider all on the real number
field R. However, for b ̸= 0, this equation has not any solution for the case
a = 0, and so, by the concept of the Tikhonov regularization method, we will
consider the equation as follows:

For any fixed λ > 0, the minimum member of the Tikhonov function in x

λx2 + (ax− b)2; (2.2)

that is,

xλ(a, b) =
ab

λ+ a2
(2.3)

may be considered as the fraction in the sense of Tikhonov with parameter
λ, in a generalized sense. Note that the limit

lim
λ→+0

xλ(a, b)

exists always. By the limit

lim
λ→+0

xλ(a, b) =
b

a
, (2.4)

we will define the general fractions b/a.
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Note that, for a ̸= 0, the definition (2.4) is the same as the ordinary
sense, however, when a = 0, we obtain the desired results b/0 = 0, since
xλ(0, b) = 0, always.

The result (2.4) is, of course, a trivial Moore-Penrose generalized inverse
(solution) for the equation ax = b. The Moore-Penrose generalized inverse
gives the very natural generalized solutions for some general linear equations
and its theory is well-established as a classical one. In this sense, we can say
that our division by zero is trivial and clear against the long and mysterious
history of the division by zero.

For the general theory of the Tikhonov regularization and many applica-
tions, see the cited references, for example, [54].

2.2 By the Takahasi uniqueness theorem

Sin-Ei, Takahashi ([59]) established a simple and natural interpretation (1.2)
by analyzing any extensions of fractions and by showing the complete char-
acterization for such property (1.2). Furthermore, he examined several fun-
damental properties of the general fractions from the viewpoint of operator
theory. His result will show that our mathematics says that the results (1.2)
should be accepted as natural ones.

Theorem. Let F be a function from C×C to C such that

F (a, b)F (c, d) = F (ac, bd)

for all
a, b, c, d ∈ C

and
F (a, b) =

a

b
, a, b ∈ C, b ̸= 0.

Then, we obtain, for any a ∈ C

F (a, 0) = 0.

Proof. We have F (a, 0) = F (a, 0)1 = F (a, 0)2
2
= F (a, 0)F (2, 2) =

F (a · 2, 0 · 2) = F (2a, 0) = F (2, 1)F (a, 0) = 2F (a, 0).
Thus F (a, 0) = 2F (a, 0) which implies the desired result F (a, 0) = 0 for

all a ∈ C.
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Several mathematicians pointed out to the author for the publication of
the paper ([24]) that the notations of 100/0 and 0/0 are not good for the
sake of the generalized senses, however, there does not exist other natural
and good meaning for them. Why should we need and use any new notations
for involving the notations? We should use the notation, we think so. Indeed,
we will see in this book that many and many fractions in our formulas will
have this meaning with the concept of the division by zero calculus for the
case of functions.

We have still mysterious confusions for the division by zero. Its basic
one reason will be given by that we were not able to give any reasonable
definition of the division by zero.

2.3 By the Yamada field containing the division by
zero

As an algebraic structure, we will give the simple filed structure containing
the division by zero.

We consider
C2 = C×C

and the direct decomposition

C2 = (C \ {0})2 + ({0} × (C \ {0})) + ((C \ {0})× {0}) + {0}2 .

Then, we note that

Theorem 1. For the set C2, we introduce the relation ∼: for any
(a, b), (c, d) ∈ (C \ {0})2,

(a, b) ∼ (c, d) ⇐⇒ ad = bc

and, for any (a, b), (c, d) ̸∈ (C \ {0})2, in the above direct decomposition

(a, b) ∼ (c, d).

Then, the relation ∼ satisfies the equivalent relation.

Definition 1. For the quotiant set by the relation ∼ of the set C2, we
write it by A and for the class containing (a, b), we shall write it by a

b
.
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Note that

Lemma 1. In C2, if (a, b) ∼ (m,n) and (c, d) ∼ (p, q), then (ac, bd) ∼
(mp, nq).

Then, we obtain the main result, as we can check easily:

Theorem 2. For any members a
b
, c
d
∈ A, we introduce the product · as

follows:
a

b
· c
d
=
ac

bd

and the sum +:

a

b
+
c

d
=


c
d
, if a

b
= 0

1
a
b
, if c

d
= 0

1
,

ad+bc
bd

, if a
b
, c
d
̸= 0

1
,

then, the product and the sum are well-defined and A becomes a field Y.

Indeed, we can see easily the followings: 1) Under the operation + , Y
becomes an abelian group and 0

1
= 0Y is the unit element.

2) Under the operation · , Y \ {0Y } becomes an abelian group and 1
1
is

the unit element.
3) In Y , operations + and · satisfies distributive law.

Remark. In C2, when (a, b) ∼ (m,n) and (c, d) ∼ (p, q), the relation
(ad+ bc, bd) ∼ (mq + np, nq) is, in general, not valid. In general,

a

b
+
c

d
=
ad+ bc

bd

is not well-defined and is not valid.

Indeed, (1, 2) ∼ (1, 2) and (3, 0) ∼ (0, 3), but

(1 · 0 + 2 · 3, 2 · 0) = (6, 0) ̸∼ (3, 6) = (1 · 3 + 2 · 0, 2 · 3).

Theorem 3. The two fields Y and C are homomorphic.

Indeed, consider the mapping f from Y to C:

f : x =
a

b
7→

{
ab−1

(
a
b
̸= 0Y

)
0

(
a
b
= 0Y

)
.
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Then, we can see easily the followings: 1)f(x+y) = f(x)+f(y), 2)f(x ·y) =
f(x)f(y), 3)f(1Y ) = 1, and 4)f is a one to one and onto mapping from Y to
C.

We define a unary operation φY on Y as

φY

(a
b

)
=
b

a
.

For the inverse element of x = a
b
̸= 0Y , we shall denote it by x−1.

Definition 2. We define a binary operation / on Y as follows: For any
x, y ∈ Y

x/y = x · φY (y) =

{
xy−1 (y ̸= 0Y ) ,

0 (y = 0Y ) .

We will call the field Y with the operation φY 0-divisible field.

Theorem 3. C becomes a 0-divisible field.

Indeed, in C, a unary operation φ = f ◦ φY ◦ f−1 is induced by the
homomorphic f from the 0-divisible field C. Then, for any z ∈ C,

φ(z) =

{
z−1 (z ̸= 0) ,

0 (z = 0) .

We, however, would like to state that the division by zero z/0 = 0 is
essentially, just the definition, and we can derive all the properties of the
division by zero, essentially, from the definition. Furthermore, by the idea
of this session, we can introduce the fundamental concept of the divisions
(fractions) in any field.

We should use the 0-divisible field Y for the complex numbers field C as
complex numbers, by this simple modification.
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2.4 By the intuitive meaning of the fractions (division)
by H. Michiwaki

We will introduce an another approach. The division b/a may be defined in-
dependently of the product. Indeed, in Japan, the division b/a ; b raru
a (jozan) is defined as how many a exists in b, this idea comes from subtrac-
tion a repeatedly. (Meanwhile, product comes from addition). In Japanese
language for ”division”, there exists such a concept independently of product.
H. Michiwaki and his 6 years old daughter said for the result 100/0 = 0 that
the result is clear, from the meaning of the fractions independently of the
concept of product and they said: 100/0 = 0 does not mean that 100 = 0×0.
Meanwhile, many mathematicians had a confusion for the result. Her under-
standing is reasonable and may be acceptable: 100/2 = 50 will mean that
we divide 100 by 2, then each will have 50. 100/10 = 10 will mean that
we divide 100 by 10, then each will have 10. 100/0 = 0 will mean that we
do not divide 100, and then nobody will have at all and so 0. Furthermore,
they said then the rest is 100; that is, mathematically;

100 = 0 · 0 + 100.

Now, all the mathematicians may accept the division by zero 100/0 = 0 with
natural feelings as a trivial one?

For simplicity, we shall consider the numbers on non-negative real num-
bers. We wish to define the division (or fraction) b/a following the usual
procedure for its calculation, however, we have to take care for the division
by zero: The first principle, for example, for 100/2 we shall consider it as
follows:

100− 2− 2− 2−, ...,−2.

How may times can we subtract 2? At this case, it is 50 times and so, the
fraction is 50. The second case, for example, for 3/2 we shall consider it as
follows:

3− 2 = 1

and the rest (remainder) is 1, and for the rest 1, we multiple 10, then we
consider similarly as follows:

10− 2− 2− 2− 2− 2 = 0.
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Therefore 10/2 = 5 and so we define as follows:

3

2
= 1 + 0.5 = 1.5.

By these procedures, for a ̸= 0 we can define the fraction b/a, usually. Here
we do not need the concept of product. Except the zero division, all the
results for fractions are valid and accepted. Now, we shall consider the zero
division, for example, 100/0. Since

100− 0 = 100,

that is, by the subtraction 100 − 0, 100 does not decrease, so we can not
say we subtract any from 100. Therefore, the subtract number should be
understood as zero; that is,

100

0
= 0.

We can understand this: the division by 0 means that it does not divide 100
and so, the result is 0. Similarly, we can see that

0

0
= 0.

As a conclusion, we should define the zero division as, for any b

b

0
= 0.

For complex numbers, we can consider the division z1
z2
, similarly, by using

the Euler formula

z1
z2

=
r1
r2
{cos(θ1 − θ2) + sin(θ1 − θ2)} (2.5)

for |zj| = rj and arg zj = θj. The problem may be reduced to one of the
division r1

r2
.

H. Michiwaki checked this subsection and recalled his documents as fol-
lows (2018.1.8.0:43): exp(0) = 0, 1 (H. Michiwaki: 2016.3.21.), 00 = 0
(H. Michiwaki : 2014.9.21,2015.11.7,2016.2.14.), cos 0 = 0, 1 (H. Michiwaki:
2016.3.16.), aFa = bFb (H. Michiwaki: 2015.11.17.), ω = v/r（H. Michiwaki:
2014.2.28.).

See [24] for the details.
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2.5 Other introductions of general fractions

By the extension of the fundamental function W = 1/z from C \ {0} onto
C such that W = 1/z is a one to one and onto mapping from C \ {0} onto
C \ {0} and the division by zero 1/0 = 0 is a one to one and onto mapping
extension of the function W = 1/z from C onto C.

By considering the values of functions with the mean values of functions,
we can introduce the general fractions. Note here that the Cauchy integral
formula may be considered as a mean value theorem. The mean values will
be considered as a fundamental concept in analysis.

On the division by zero in our theory, we will need only one new as-
sumption in our mathematics that for the elementary function W = 1/z,
W (0) = 0. However, for algebraic calculation of the division by zero, we
have to follow the law of the Yamada field. For functions, however, we have
to consider the concept of the division by zero calculus, as we will develop
the details later with many applications.

We stated, on the division by zero, the importance of the definition of the
division by zero z/0. However, we note that in our definition it is given as a
generalization or extension of the usual fraction. Therefore, we will not
be able to give its precise meanings at all. For this sense, we do not know the
direct meaning of the division by zero. It looks like a black hole. In order
to know its meaning, we have to examine many properties of the division by
zero by applications.
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3 Stereographic projection

For a great meaning and importance, we will see that the point at infinity
is represented by zero. Of course, we saw that for the fundamental function
W = 1/z, since 1/0 = 0, we see that the point at infinity is represented by
zero.

3.1 The point at infinity is represented by zero

By considering the stereographic projection, we will be able to see that the
point at infinity is represented by zero.

Consider the sphere (ξ, η, ζ) with radius 1/2 put on the complex z = x+iy
plane with center (0, 0, 1/2). From the north pole N(0, 0, 1), we consider
the stereographic projection of the point P (ξ, η, ζ) on the sphere onto the
complex z(= x+ iy) plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
. (3.1)

If ζ = 1, then, by the division by zero, the north pole corresponds to the
origin (0, 0) = 0.

Here, note that

x2 + y2 =
ζ

1− ζ
.

For ζ = 1, we should consider as 1/0 = 0, not from the expansion, – by the
division by zero calculus that is discussed in details later, –

ζ

1− ζ
= −1− 1

ζ − 1
.

We will consider the unit sphere {(x1, x2, x3);x21+x22+x23 = 1}. From the
north pole N(0, 0, 1), we consider the stereographic projection of the point
P (x1, x2, x3) on the sphere onto the (x, y) plane; that is,

(x1, x2, x3) = (3.2)(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1− 1/(x2 + y2)

1 + 1/(x2 + y2)

)
.

Then, we see that the north pole corresponds to the origin.
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Next, we will consider the semi-sphere (ξ, η, ζ) with center C(0, 0, 1) and
radius 1 on the origin on the (x, y) plane. From the center C(0, 0, 1), we
consider the stereographic projection of the point P (ξ, η, ζ) on the semi-
sphere onto the complex (x, y) plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
. (3.3)

If ζ = 1, then, by the division by zero, the center C corresponds to the origin
(0, 0).

Meanwhile, we will consider the mapping from the open unit disc with
center the origin onto R2 in one to one and onto

ξ =
x
√
x2 + y2

1 + x2 + y2
, η =

y
√
x2 + y2

1 + x2 + y2

or

x =
ξ√

ρ(1− ρ)
, y =

η√
ρ(1− ρ)

; ρ2 = ξ2 + η2.

Note that the point (x, y) = (0, 0) corresponds to ρ = 0; (ξ, η) = (0, 0) and
ρ = 1.

Furthermore, we will see many examples in this book.

3.2 A contradiction of classical idea for 1/0 = ∞
The infinity ∞ may be considered by the idea of the limiting, however, we
had considered it as a number, for sometimes, typically, the point at infinity
was represented by ∞ for some long years. For this fact, we will show a
formal contradiction.

We will consider the stereographic projection by means of the unit sphere

ξ2 + η2 +

(
ζ − 1

2

)2

= 1

from the complex z = x + iy plane onto the sphere. Then, we obtain the
correspondences

x =
ξ

1− ζ
, y =

η

1− ζ
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and

ξ =
1

2

z + z

zz + 1
, η =

1

2i

z − z

zz + 1
, ζ =

zz

zz + 1
.

In general, two points P andQ1 on the diameter of the unit sphere correspond
to z and z1, respectively if and only if

zz1 + 1 = 0. (3.4)

Meanwhile, two points P and Q2 on the symmetric points on the unit sphere
with respect to the plane ζ = 1

2
correspond to z and z2, respectively if and

only if
zz2 − 1 = 0. (3.5)

If the point P is the origin or the north pole, then the points Q1 and Q2 are
the same point. Then, the identities (3.4) and (3.5) are not valid that show
a contradiction.

Meanwhile, if we write (3.4) and (3.5)

z = − 1

z1
(3.6)

and

z =
1

z2
, (3.7)

respectively, we see that the division by zero (1.2) is valid.

3.3 Natural meanings of 1/0 = 0

We can see our division by zero to many fractions. We will show the simple
examples.

For constants a and b satisfying

1

a
+

1

b
= k, ( ̸= 0, const.)

the function
x

a
+
y

b
= 1

passes the point (1/k, 1/k). If a = 0, then, by the division by zero, b = 1/k
and y = 1/k; this result is natural.
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We will consider the line y = m(x−a)+b through a fixed point (a, b); a, b >
0 with gradientm. We setA(0,−am+b) andB(a−(b/m), 0) that are common
points with the line and both lines x = 0 and y = 0, respectively. Then,

AB
2
= (−am+ b)2 +

(
a− b

m

)2

.

If m = 0, then A(0, b) and B(a, 0), by the division by zero, and furthermore

AB
2
= a2 + b2.

Then, the line AB is a corresponding line between the origin and the point
(a, b). Note that this line has only one common point with the both lines
x = 0 and y = 0. Therefore, this result will be very natural in a sense.
– Indeed, we can understand that the line AB is broken as the two lines
(0, b)−(a, b) and (a, b)−(a, 0), suddenly. Or, the line AB is the line connecting
the origin and the point (a, b).

The general line equation with gradient m is given by, with a constant b

y = m(x− a) + b (3.8)

or
y

m
= x− a+

b

m
. (3.9)

By m = 0, we obtain the equation x = a, by the division by zero. This
equation may be considered the cases m = ∞ and m = −∞, and these cases
may be considered by the strictly right logic with the division by zero.

By the division by zero, we can consider the equation (3.8) as a general
line equation.

In the Lami’s formula for three vectors A,B,C satisfying

A+B+C = 0, (3.10)

∥A∥
sinα

=
∥B∥
sin β

=
∥C∥
sin γ

, (3.11)

if α = 0, then we obtain:

∥A∥
0

=
∥B∥
0

=
∥C∥
0

= 0, (3.12)
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Here, of course, α is the angle of B and C, β is the angle of C and A, and
γ is the angle of A and B,

For the Newton’s formula; that is, for a C2 class function y = f(x), the
curvature K at the origin is given by

K = lim
x→0

∣∣∣∣x22y
∣∣∣∣ = ∣∣∣∣ 1

f ′′(0)

∣∣∣∣ , (3.13)

we have: for f ′′(0) = 0,

K =
1

0
= 0. (3.14)

Recall the formula

bn =
1

π

∫ 2π

0

x sinnxdx = − 2

n
,

for
n = ±1,±2, ..., ....

Then, for n = 0, we have

b0 = −2

0
= 0.

Furthermore, we will see many examples in this book.

3.4 Double natures of the zero point z = 0

Any line on the complex plane arrives at the point at infinity and the point at
infinity is represented by zero. That is, a line is, indeed, contains the origin;
the true line should be considered as the sum of a usual line and the origin.
We can say that it is a compactification of the line and the compacted point
is the point at infinity, however, it it is represented by z = 0. Later, we will
see this property by analytic geometry and the division by zero calculus in
many situations.

However, for the general line equation

ax+ by + c = 0, (3.15)

by using the polar coordinates x = r cos θ, y = r sin θ, we have

r =
−c

a cos θ + b sin θ
. (3.16)
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When a cos θ + b sin θ = 0, by the division by zero, we have r = 0; that is,
we can consider that the line contains the origin. We can consider so, in the
natural sense. We can define so as a line with the compactification and the
representation of the point at infinity - the ideal point.

For the envelop of the linear lines represented by, for constants m and a
fixed constant p > 0,

y = mx+
p

m
, (3.17)

we have the function, by using an elementary ordinary differential equation,

y2 = 4px. (3.18)

The origin of this parabolic function is missing from the envelop of the linear
functions, because the linear equations do not contain the y axis as the
tangential line of the parabolic function. Now recall that, by the division by
zero, as the linear equation for m = 0, we have the function y = 0, the x
axis.

– This function may be considered as a function with zero gradient and
passing the point at infinity; however, the point at infinity is represented by
0, the origin; that is, the line may be considered the x axis. Furthermore,
then we can consider the x axis as a tangential line of the parabolic function,
because they are gradient zero at the point at infinity. –

Furthermore, we can say later that the x axis y = 0 and the parabolic
function have the zero gradient at the origin; that is, in the reasonable sense
the x axis is a tangential line of the parabolic function.

Indeed, we will see the surprising property that the gradient of the parabolic
function at the origin is zero.

Anyhow, by the division by zero, the envelop of the linear functions may
be considered as the whole parabolic function containing the origin.

When we consider the limiting of the linear equations as m→ 0, we will
think that the limit function is a parallel line to the x axis through the point
at infinity. Since the point at infinity is represented by zero, it will become
the x axis.

Meanwhile, when we consider the limiting function as m → ∞, we have
the y axis x = 0 and this function is an ordinally tangential line of the
parabolic function. From these two tangential lines, we see that the origin
has double natures; one is the continuous tangential line x = 0 and the
second is the discontinuous tangential line y = 0.
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In addition, note that the tangential point of (3.18) for the line (3.17) is
given by (

p

m
,
2p

m

)
(3.19)

and it is (0, 0) for m = 0.
We can see the point at infinity is reflected to the origin; and so, the origin

has the double natures; one is the native origin and another is reflected to
the origin of the point at infinity.
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4 Mirror image with respect to a circle

For simplicity, we will consider the unit circle |z| = 1 on the complex z =
x+ iy plane. Then, we have the reflection formula

z∗ =
1

z
(4.1)

for any point z, as well-known ([2]). For the reflection point z∗, there is no
problem for the points z ̸= 0,∞. As the classical result, the reflection of
zero is the point at infinity and conversely, for the point at infinity we have
the zero point. The reflection is a one to one and onto mapping between the
inside and the outside of the unit circle, by considering the point at infinity.

Are these correspondences, however, suitable? Does there exist the point
at ∞, really? Is the point at infinity corresponding to the zero point, by the
reflection? Is the point at ∞ reasonable from the practical point of view?
Indeed, where can we find the point at infinity? Of course, we know plesantly
the point at infinity on the Riemann sphere, however, on the complex z-plane
it seems that we can not find the corresponding point. When we approach to
the origin on a radial line, it seems that the correspondence reflection points
approach to the point at infinity with the direction (on the radial line).

On the concept of the division by zero, there is no the point at infinity
∞ as the numbers. For any point z such that |z| > 1, there exists the unique
point z∗ by (4.1). Meanwhile, for any point z such that |z| < 1 except z = 0,
there exits the unique point z∗ by (4.1). Here, note that for z = 0, by the
division by zero, z∗ = 0. Furthermore, we can see that

lim
z→0

z∗ = ∞, (4.2)

however, for z = 0 itself, by the division by zero, we have z∗ = 0. This
will mean a strong discontinuity of the functions W = 1

z
and (4.1) at the

origin z = 0; that is a typical property of the division by zero. This strong
discontinuity may be looked in the above reflection property, physically.

The result is a surprising one in a sense; indeed, by considering the ge-
ometrical corresponding of the mirror image, we will consider the center
corresponds to the point at infinity that is represented by the origin z = 0.
This will show that the mirror image is not followed by this concept; the cor-
responding seems to come from the concept of one-to-one and onto mapping.
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Should we exclude the point at infinity, from the numbers? We
were able to look the strong discontinuity of the division by zero in the re-
flection with respect to circles, physically ( geometrical optics ). The division
by zero gives a one to one and onto mapping of the reflection (4.1) from the
whole complex plane onto the whole complex plane.

The infinity ∞ may be considered as in (4.2) as the usual sense
of limits, however, the infinity ∞ is not a definite number.

We consider a circle on the complex z plane with center z0 and radius r.
Then, the mirror image relation p and q with respect to the circle is given by

p = z0 +
r2

q − z0
. (4.3)

For q = z0, we have, by the division by zero,

p = z0, (4.4)

For a circle

Azz + βz + βz +D = 0; A > 0, D : real number, (4.5)

or (
z +

β

A

)(
z +

β

A

)
=

|β|2 − AD

A2
, (4.6)

the points z and z1 are in the relation of the mirror image with respect to
the circle if and only if

Az1z + βz1 + βz +D = 0, (4.7)

or

z1 = −βz +D

Az + β
(4.8)

= −β

A
− 1

A

(
D − |β|2

A

)
1

z −
(
− β

A

) .
The center −β/A corresponds to the center itself, as we see from the division
by zero for (4.6).
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On the x, y plane, we shall consider the inversion relation with respect to
the circle with radius R and with center at the origin:

x′ =
xR2

x2 + y2
, y′ =

yR2

x2 + y2
. (4.9)

Then, the line
ax+ by + c = 0 (4.10)

is transformed to the line

R2(ax′ + by′) + c((x′)2 + (y′)2) = 0. (4.11)

In particular, for c = 0, the line ax + by = 0 is transformed to the line
ax′ + by′ = 0. This corresponding is one-to-one and onto, and so the origin
(0, 0) have to correspond to the origin (0, 0).

Furthermore, we will see many examples in this book.

For the elliptic curve

x2

a2
+
y2

b2
= 1, a, b > 0 (4.12)

and for the similar correspondences

x′ =
a2b2x

b2x2 + a2y2
, y′ =

a2b2y2

b2x2 + a2y2
, (4.13)

the origin corresponds to itself.
The pole (x1, y1) of the line

ax+ by + c = 0 (4.14)

with respect to a circle with radius R with center (x0, y0) is given by

x1 = x0 −
aR2

ax0 + by0 + c
(4.15)

and

y1 = y0 −
bR2

ax0 + by0 + c
. (4.16)

If ax0 + by0 + c = 0, then we have (x1, y1) = (x0, y0).
Furthermore, for various higher dimensional cases the results are similar.
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5 Division by zero calculus

As the number system containing the division by zero, the Yamada field
structure is complete.

However for applications of the division by zero to functions, we will
need the concept of division by zero calculus for the sake of uniquely deter-
minations of the results and for other reasons. See [29].

For example, for the typical linear mapping

W =
z − i

z + i
, (5.1)

it gives a conformal mapping on {C \ {−i}} onto {C \ {1}} in one to one
and from

W = 1 +
−2i

z − (−i)
, (5.2)

we see that −i corresponds to 1 and so the function maps the whole {C}
onto {C} in one to one.

Meanwhile, note that for

W = (z − i) · 1

z + i
, (5.3)

we should not enter z = −i in the way

[(z − i)]z=i ·
[

1

z + i

∣∣∣∣
z=i

= 0 · (−2i) = 0. (5.4)

However, in may cases, the above two results will have practical meanings
and so, we will need to consider many ways for the application of the division
by zero and we will need to check the results obtained, in some practical
viewpoints. We will refer to this delicate problem with many examples.

The short version of this section was given by [45] in the Proceedings of the
Internationa Conference: https://sites.google.com/site/sandrapinelas/icddea-
2017. However, the contents are mainly restricted to the differential equa-
tions for the conference topics.
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5.1 Introduction of the division by zero calculus

We will introduce the division by zero calculus. For any Laurent expansion
around z = a,

f(z) =
−1∑

n=−∞

Cn(z − a)n + C0 +
∞∑
n=1

Cn(z − a)n (5.5)

we obtain the identity, by the division by zero

f(a) = C0. (5.6)

Note that here, there is no problem on any convergence of the expansion
(5.5) at the point z = a, because all the terms (z − a)n are zero at z = a for
n ̸= 0.

For the correspondence (5.6) for the function f(z), we will call it the
division by zero calculus. By considering the formal derivatives in (5.5),
we can define any order derivatives of the function f at the singular point a;
that is,

f (n)(a) = n!Cn.

In order to avoid any logical confusion in the division by zero, we would
like to refer to the logical essence:

For the elementary function W = f(z) = 1/z, we define f(0) = 0
and we will write it by 1/0 following the form, apart from the sense
of the intuitive sense of fraction. With only this new definition, we
can develop our mathematics, through the division by zero calcu-
lus.

As a logical line for the division by zero, we can also consider as follows:
We define 1/0 = 0 for the form; this precise meaning is that for the

function W = f(z) = 1/z, we have f(0) = 0 following the form. Then, we
can define the division by zero calculus (5.6) for (5.5). In particular, from
the function f(x) ≡ 0 we have 0/0 = 0. In this sense, 1/0 = 0 is more
fundamental than 0/0 = 0; that is, from 1/0 = 0, 0/0 = 0 is derived.

In order to avoid any logical confusion, we would like to state the essence,
repeatedly.

Apart from the motivation, we define the division by zero cal-
culus by (5.6). With this assumption, we can obtain many new results
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and new ideas. However, for this assumption we have to check the results
obtained whether they are reasonable or not. By this idea, we can avoid
any logical problems. – In this point, the division by zero calculus may be
considered as an axiom.

We will give typical and various examples.

For the typical function sin x/x, we have

sinx

x
(0) =

sin 0

0
=

0

0
= 0,

however, by the division by zero calculus, we have, for the function (sinx)/x

sinx

x
(0) = 1,

that is more reasonable in analysis.
However, for functions we see that the results by the division by zero

calculus have not always practical senses and so, for the results by division
by zero we should check the results, case by case.

For example, for the simple example for the line equation on the x, y
plane

ax+ by + c = 0

we have, formally

x+
by + c

a
= 0,

and so, by the division by zero, we have, for a = 0, the reasonable result

x = 0.

Indeed, for the equation y = mx, from

y

m
= x,

we have, by the division by zero, x = 0 for m = 0. This gives the case
m = ±∞ of the gradient of the line. – This will mean that the equation
y = mx represents the general line through the origin in this sense. – This
method was applied in many cases, for example see [38, 39].

However, from
ax+ by

c
+ 1 = 0,
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for c = 0, we have the contradiction, by the division by zero

1 = 0.

Meanwhile, note that for the function f(z) = z + 1
z
, f(0) = 0, however,

for the function

f(z)2 = z2 + 2 +
1

z2
,

we have f 2(0) = 2. Of course,

f(0) · f(0) = {f(0)}2 = 0.

In the formula
xa+1

a+ 1

(
log x− 1

x+ 1

)
,

for a = −1, we have, by the division by zero calculus,

1

2
(log x) .

Furthermore, see many examples, [29].

We defined the division by zero calculus for analytic functions, because we
used the Laurent expansion. For the case of some smooth functions that are
not analytical, the division by zero calculus is delicate. However, by applying
the method of division by zero calculus by using the Taylor expansion for the
Laurent expansion, we can consider the division by zero calculus. However,
its logical situation is unclear and therefore we should check the
results obtained. By checking the results obtained, we can enjoy
the division by zero calculus for some general functions for creating
new results. See [29].

For a smooth function f(x) of class Cn for n ≥ 1, from the Taylor expan-
sion around x = a, we have:

f(x) =
n−1∑
k=0

f (k)(a)

k!
(x− a)k +

f (n)(c)

n!
(x− a)n. (5.7)

a < c < x or a > c > x.
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Then, we obtain, by the division by zero[
f(x)

(x− a)m

]
x=a

=

{
0 (m > n)
f (m)(a)

m!
(m ≤ n).

(5.8)

Note that the division by zero calculus was defined by the value of the func-

tion at the point a, not by the limiting x→ a. Therefore, the function f (n)(c)
n!

in (5.7) is f (n)(a)
n!

at the point a. The division by zero calculus is defined for
analytic functions at isolated singular points by using the Laurent expansion,
but for smooth functions that are not analytic, we will be able to consider
the division by zero calculus by this sense, by using the Taylor expansion.

Note, in particular, that for a function f(x) of class C2 around x = a, by
the division by zero,[

f(a+ h) + f(a− h)− 2f(a)

h2

]
h=0

= f ′′(a). (5.9)

For the function

f(x) = x sin
1

x
,

if f(0) = 0, then the function is continuous at x = 0, however, it is not
differentiable at the origin. By the division by zero calculus, we have, auto-
matically

f(0) = 1.

Meanwhile, we have an interesting formula whose proof is simple:

Theorem 1. Consider a family of absolutely continuous functions fa (x)
that is analytic in a ∈ R\{a0} . Let ga (x) = f ′

a (x) , and we assume that it is
extensible to the point on a = a0 as an absolutely continuous function, then

fa0 (x) =

∫
ga0 (x) dx.

We will show examples:

1. Let fn(x) =
(ax+b)n+1

a(n+1)
where a ∈ R \ {0} and n + 1: poisitive integers.

Then gn(x) = (ax+ b)n and[
(ax+ b)n+1

a (n+ 1)

]
n=−1

=

∫
(ax+ b)−1 dx =

ln |ax+ b|
a

, a ̸= 0;
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by the same way we have[
(ax+ b)n+1

a (n+ 1)

]
a=0

=

∫
bndx = bnx.

2. Let f(x) = arctan(x/a)
a

where a ∈ R \ {0} . On this case we get gn(x) =
1

x2+a2
and consequently[

arctan (x/a)

a

]
a=0

=

∫
1

x2
dx = −1

x
.

3. Let f(x) = ax

log a
, a > 0. Then, we obtain[

ax

log a

]
a=1

=

∫
dx = x.

In this example, note that the function f(x) may not be considered in
the sense of the Laurent expansion in a. However, by setting log a = A,
we can obtain that:

eAx

A
|A=0 = x,

by the division by zero calculus. In the formula∫
axdx =

ax

log a
+ C,

for a = 1, the formula ∫
1xdx =

1x

log 1
+ C

is not valid.

We, meanwhile, obtain that(
1

log x

)
x=1

= 0. (5.10)
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Indeed, we consider the function y = exp(1/x), x ∈ R and its inverse
function y = 1

log x
. By the symmetric property of the two functions

with respect to the function y = x, we have the desired result.

Here, note that for the function 1
log x

, we cannot use the Laurent ex-
pansion around x = 1, and therefore, the result is not trivial.

Theorem 2. Consider a family of absolutely continuous functions Fa (x)
where a ∈ I ⊂ R, I is an open interval, and

fa(x) =

∫
Fa(x)dx.

If a point a0 is a pole of order n of the analytic functions fa(x) as functions
in a and there exists an analytic function g : I → R for any fixed x such that
g (a, x) = (a− a0)

n fa (x) then∫
Fa0(x)dx =

g(n) (a0, x)

n!
.

Proof : Using the Taylor theorem, we have, for any fixed x

g (a, x) =
∞∑
k=0

g(k) (a0, x)

k!
(a− a0)

k ,

and by the division by zero calculus, we have∫
Fa0(x)dx = fa0(x) =

[
1

(a− a0)
n g (a, x)

]
a=a0

=
g(n) (a0, x)

n!
.

Theorems 1 and 2 were discovered by S. Pinelas (see [45]).
We shall give examples.

1. For the integral∫
x(x2 + 1)adx =

(x2 + 1)a+1

2(a+ 1)
(a ̸= −1), (5.11)

we obtain, by the division by zero,∫
x(x2 + 1)−1dx =

log(x2 + 1)

2
. (5.12)
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2. For the integral∫
sin ax cosxdx =

sin ax sinx+ a cos ax cosx

1− a2
(a2 ̸= 1), (5.13)

we obtain, by the division by zero, for the case a = 1∫
sinx cosxdx =

sin2 x

2
− 1

4
. (5.14)

3. For the integral∫
sinα−1 x cos(α + 1)xdx =

1

α
sinα x cosαx, (5.15)

we obtain, by the division by zero, for the case α = 0∫
sin−1 x cosxdx = log sinx. (5.16)

4. For the integral∫
eax sin bxdx =

eax

a2 + b2
(a sin bx+ b cos bx) , (5.17)

for example, we can consider the case a = bi, by the division by zero
calculus, and we can obtain the expected good result.

We can obtain many and many such identities.

We will state the formal theorem whoes proof is trivial:

Theorem 3. Consider an operator L that transforms functions fz (t) on
a set T with analytic parameter z of an isolated singular point a into functions
L [fz (t)] = Fz (s) on a set S. Assume that for the Laurent expansions around
a point a ∈ D, a disc on the complex z plane with center a, for any fixed t

fz (t) =
∞∑

n=−∞

fn(t)(z − a)n,

L [fz (t)] =
∞∑

n=−∞

L [fn (t)] (z − a)n.
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Then we have
Fa (s) = L [f0 (t)] . (5.18)

We illustrate this result with examples:

1. Let fλ (t) =
sin(λt)

λ
, where λ ∈ R \ {0} . The Laplace transform of fλ (t)

is

L

[
sin (λt)

λ

]
=

1

s2 + λ2

for λ ̸= 0. Then we have:

L [t] =
1

s2
.

2. Let fµ,λ (t) =
eµt−eλt

µ−λ
, where µ ̸= λ. The Laplace transform of fµ,λ (t) is

L

[
eµt − eλt

µ− λ

]
=

1

(s− µ) (s− λ)

for µ ̸= λ. Then we have:

L
[
teλt
]
=

1

(s− λ)2
. (5.19)

3. We consider the function

f(t) =


2t, if 0 ≤ t < 1;

3− t, if 1 ≤ t < 2;

0, if t ≥ 2,

whose Laplace transform is

F (s) =
1− 2e−s + e−3s

s2
(s > 0).

([54]). Then, by l’Hopital law, we can not derive the value at s = 0 as
7/2, which is derived by the division by zero calculus.
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4. As a typical example in A. Kaneko ([23], page 11) in the theory of
hyperfunction theory: for non-integers λ, we have

xλ+ =

[
−(−z)λ

2i sin πλ

]
=

1

2i sin πλ
{(−x+ i0)λ − (−x− i0)λ} (5.20)

where the left hand side is a Sato hyperfunction and the middle term
is the representative analytic function whose meaning is given by the
last term. For an integer n, Kaneko derived that

xn+ =

[
− zn

2πi
log(−z)

]
, (5.21)

where log is a principal value: {−π < arg z < +π}. Kaneko stated
there that by taking a finite part of the Laurent expansion, the formula
is derived. Indeed, we have the expansion, for around n, integer

−(−z)λ

2i sin πλ

=
−zn

2πi

1

λ− n
− zn

2πi
log(−z)−

(
log2(−z)zn

2πi · 2!
+

πzn

2i · 3!

)
(λ− n) + ...

(5.22)
([23], page 220).

By Theorem 3, however, we can derive this result (5.21) from the Lau-
rent expansion (5.22), immediately.

Meanwhile, M. Morimoto derived this result by using the Gamma func-
tion with the elementary means in [31], pages 60-62. See also [19].

5. For many generating functions we can obtain some interesting identi-
ties. For example, we will consider the mapping

ζ ∈ C \ {0} → F (z, ζ) := exp
z

2

(
ζ − 1

ζ

)
Then, from

F (z, ζ) =
+∞∑

n=−∞

Jn(z)ζ
n, (5.23)

we obtain:
F (z, 0) = J0(z).
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5.2 Difficulty in Maple for specialization problems

For the Fourier coefficients an

an =

∫
t cosnπtdt =

cosnπt

n2π2
+

t

nπ
cosnπt, (5.24)

we obtain, by the division by zero calculus,

a0 =
t2

2
. (5.25)

Similarly, for the Fourier coefficients an

an =

∫
t2 cosnπtdt =

2t

π2n2
cosnπt− 2

n3π3
sinnπt+

t2

nπ
sinnπt, (5.26)

we obtain

a0 =
t3

3
. (5.27)

For the Fourier coefficients ak of a function :

akπk
3

4

= sin(πk) cos(πk) + 2k2π2 sin(πk) cos(πk) + 2π(cos(πk))2 − πk, (5.28)

for k = 0, we obtain, by the division by zero calculation, immediately

a0 =
8

3
π2 (5.29)

(see [64], (3.4)).
We have many such examples.

5.3 Reproducing kernels

The function

Ka,b(x, y) =
1

2ab
exp

(
− b

a
|x− y|

)
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is the reprodiucing kernel for the space HKa,b
equipped with the norm

∥f∥2HKa,b
=

∫
(a2f ′(x)2 + b2f(x)2)dx

([54], pages 15-16). If b = 0, then

Ka,0(x, y) = − 1

2a2
|x− y|

is the reproducing kernel for the space HKa,0 equipped with the norm

∥f∥2HKa,b
= a2

∫
(f ′(x)2dx.

Meanwhile, if a = 0, K0,b(x, y) = 0, then it is the trivial reproducing kernel
for the zero function space.

We denote by O({0}) the set of all analytic functions defined on a neigh-
borhood of the origin.

Then, we have:
Let {Cj}∞j=0 be a positive sequence such that

lim sup
j→∞

j
√
Cj <∞. (5.30)

Set

R ≡
(
lim sup
j→∞

j
√
Cj

)−1

> 0 (5.31)

and define a kernel K by

K(z, u) ≡
∞∑
j=0

Cj z
j uj (|z|, |u| <

√
R). (5.32)

Then we have

HK(∆(
√
R)) =

f ∈ O(∆(
√
R)) :

√√√√ ∞∑
j=0

|f (j)(0)|2
(j!)2Cj

<∞

 (5.33)
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and the norm is given by:

∥f∥HK(∆(
√
R)) =

√√√√ ∞∑
j=0

|f (j)(0)|2
(j!)2Cj

that is the reproducing kernel Hilbert space admitting the kernel (5.32) ([54],
page 35).

If some constant Cj0 = 0, then there is no problem, by interpretating that
in the above statement

|f (j0)(0)|2

(j!)2Cj0

= 0. (5.34)

5.4 Ratio

On the real x− line, we fix two different point P1(x1) and P2(x2) and we will
consider the point, with a real number

P (x; r) =
x1 + rx2
1 + r

. (5.35)

If r = 1, then the point P (x; 1) is the mid point of the two points P1 and
P2 and for r > 0, the point P is on the interval (x1, x2). Meanwhile, for
−1 < r < 0, the point P is on (−∞, x1) and for r < −1, the point P is on
(x2,+∞). Of course, for r = 0, P = P1. We see that r tends to +∞ and
−∞, P tends to the point P2. We see the pleasant fact that by the division
by zero calculus, P (x,−1) = P2. For this fact we see that for all real numbers
r correspond to all real line numbers.

In particular, we see that in many text books on the undergraduate course
the formula (5.35) is stated as a parameter representation of the line through
the two pints P1 and P2. However, if we do not consider the case r = −1
by the division by zero calculus, the classical statement is not right, because
the point P2 may not be considered.

On this setting, we will consider another representation

P (x;m,n) =
mx2 − nx1
m− n

for the exterior division point P (x;m,n) in m : n for the point P1 and P2.
For m = n. we obtain, by the division by zero calculus, P (x;m,m) = x2.
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Imagine the result that the point P (x;m,m) = P2 and the point P2 seems
to be the point P1. Such a strong discontinuity happens for many cases. See
[29, 37].

By the division by zero, we can introduce the ratio for any complex num-
bers a, b, c, d as

AC

CB
=
c− a

b− c
. (5.36)

We will consider the Appollonius circle determined by the equation

AP

PB
=

|z − a|
|b− z|

=
m

n
(5.37)

for fixed m,n ≥ 0. Then, we obtain the equation for the cirlce∣∣∣∣z − −n2a+m2b

m2 − n2

∣∣∣∣2 = m2n2

(m2 − n2)2
· |b− a|2. (5.38)

If m = n ̸= 0, the circle is the line in (5.37). For |m| + |n| ̸= 0, if m = 0,
then z = a and if n = 0, then z = b. If m = n = 0 then z is a or b.

The representation (5.37) is valid always, however, (5.38) is not reasonable
for m = n. The property of the division by zero depends on the representa-
tions of formulas.

On the real line, the points P (p), Q(1), R(r), S(−1) form a harmonic
range of points if and only if

p =
1

r
.

If r = 0, then we have p = 0 that is now the representation of the point at
infinity (H. Okumura: 2017.12.27.)

5.5 Identities

For example, we have the identity

1

(x− a)(x− b)(x− c)
=

1

(c− b)(a− c)(x− a)

+
1

(b− c)(b− a)(x− b)
+

1

(c− a)(c− b)(x− c)
.
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By the division by zero calculus, the first term in the right hand side is zero
for x = a, and

1

(b− c)(b− a)(a− b)
+

1

(c− a)(c− b)(a− c)
.

This result is the same as

1

(x− a)(x− b)(x− c)
(a) ,

by the divison by zero calculus.

For the identity

1

x(a+ x)2
=

1

a2x
− 1

a(a+ x)2
− 1

a2(a+ x)
, (5.39)

we have the identity for the both 1
x3 .

For the identity
f(z) = Πn

j=1(z − zj), (5.40)

we have the identity[
f ′(z)

f(z)

]
z=z1

=
1

z1 − z2
+ ...+

1

z1 − zn
. (5.41)

For the identity
mx+ n

ax2 + 2bx+ c
(5.42)

=
m

2a

2ax+ 2b

ax2 + 2bx+ c
+
an− bm

a
− 1

ax2 + 2bx+ c
,

for a = 0, we have

mx+ n

2bx+ c
=

x(bx+ c)

(2bx+ c)2
+

2bnx+ nc+ bmx2

(2bx+ c)2
. (5.43)

For the identity

In = (−1)nn!
1

(a2 + x2)(n+1)/2
sin(n+ 1)θ (5.44)
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=
(−1)nn!

2i

[
1

(x− ai)n+1
− 1

(x+ ai)n+1

]
, z = x+ iy = eiθ,

we have, for x = ai

[In]x=ai =
(−1)nn!

2n+2in
. (5.45)

In the identity, for −π ≤ x ≤ π

∞∑
n=1

(−1)n−1 cosnx

n2 − a2
=

π cos ax

2a sin aπ
− 1

2a2
, (5.46)

for a = 0, we have

∞∑
n=1

(−1)n−1 cosnx

n2
=

1

12
(π2 − 3x2). (5.47)

In the identity, for 0 < x < 2π, |a| ≤ 1

∞∑
n=1

a2n−1 sin[(2n− 1)x]

2n− 1
=

1

2
tan−1 21 sin x

1− a2
, (5.48)

for a = 1, we have, for 0 < x < π,

∞∑
n=1

sin[(2n− 1)x]

2n− 1
=
π

4
. (5.49)

For the identities, for 0 ≤ x ≤ 2π

∞∑
n=1

1

n2 + a2
cos(nx) =

π

2a sinh(aπ)
cosh[a(π − x]]− 1

2a2
, (5.50)

and
∞∑
n=1

1

n2 − a2
cos(nx) =

π

2a sin(aπ)
cos[a(π − x]] +

1

2a2
, (5.51)

for a = 0, we have

∞∑
n=1

1

n2
cos(nx) =

1

12
(3x2 − 6πx+ 2π2). (5.52)

We can derive many these type identities.
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5.6 Remarks for the applications of the division by
zero and the division by zero calculus

As the number system, we can calculus the arithmetic by the Yamada field
structure. However, for functions, the problems are involved for their struc-
tures and we have also the delicate problems for the smoothness of functions.
So, by applying the division by zero, we should consider and apply the di-
vision by zero and division by zero calculus in many ways and check the
results. By considering many ways, we will be able to see many
new aspects and results. By checking the results obtained, we will
be able to find new prospects. With this idea, we can enjoy the
division by zero calculus with free spirits without logical problems.
– In this idea, we may ask what is mathematics?
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6 Triangles and division by zero

In order to see how elementary of the division by zero, we will see the division
by zero in triangles as the fundamental objects. Even the case of triangles,
we can derive new concepts and results.

We will consider a triangle ABC with length a, b, c. Let θ be the angle of
the side BC and the bisector line of A. Then, we have the identity

tan θ =
c+ b

c− b
tan

A

2
, b < c.

For c = b, we have

tan θ =
2b

0
tan

A

2
.

Of course, θ = π/2; that is,

tan
π

2
= 0.

Here, we used
2b

0
= 0

and not by the division by zero calculus

c+ b

c− b
= 1 +

2b

c− b

and for c = b
c+ b

c− b
= 1.

Similarly, in the formula

b− c

b+ a

1

tan A
2

+
b+ c

b− c
tan

A

2
=

2

sin(B − C)
,

for b = c, B = C, and we have

0 +
2c

0
tan

A

2
=

2

0
,

that is right.
We have the formula

a2 + b2 − c2

a2 − b2 + c2
=

tanB

tanC
.
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If a2 + b2 − c2 = 0, then C = π/2. Then,

0 =
tanB

tan π
2

=
tanB

0
.

Meanwhile, for the case a2 − b2 + c2 = 0, then B = π/2, and we have

a2 + b2 − c2

0
=

tan π
2

tanC
= 0.

Meanwhile, the lengths f and f ′ of the bisector lines of A and in the out
of the triangle ABC are given by

f =
2bc cos A

2

b+ c

and

f ′ =
2bc sin A

2

b− c
,

respectively.
If b = c, then we have f ′ = 0, by the division by zero. However, note

that, from

f ′ = 2 sin
A

2

(
c+

c2

b− c

)
,

by the division by zero calculus, for b = c, we have

f ′ = 2b sin
A

2
= a.

The result f ′ = 0 is a now popular property, but the result f ′ = a is also an
interesting popular property. See [29].

Let H be the perpendicular leg of A to the side BC and let E and M
be the mid points of AH and BC, respectively. Let θ be the angle of EMB
(b > c). Then, we have

1

tan θ
=

1

tanC
− 1

tanB
.

If B = C, then θ = π/2 and tan(π/2) = 0.
In the formula

cosA =
b2 + c2 − a2

2bc
,
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if b or c is zero, then, by the division by zero, we have cosA = 0. Therefore,
then we should understand as A = π/2.

This result may be derived from the formulas

sin2 A

2
=

(a− b+ c)(a+ b− c)

4bc

and

cos2
A

2
=

(a+ b+ c)(−a+ b+ c)

4bc
,

by applying the division by zero calculus.
This result is also valid in the Mollweide’s equation

sin
B − C

2
=

(b− c) cos A
2

a
,

for a = 0 as

0 =
(b− c) cos A

2

0
.

Let r be the radius of the inscribed circle of the triangle ABC, and
rA, rB, rC be the distances from A,B,C to the lines BC, CA, AB, respec-
tively. Then we have

1

r
=

1

rA
+

1

rB
+

1

rC
.

When the point A is the point at infinity, then, rA = 0 and rB = rC = 2r
and the identity still holds.

We have the identities, for the radius R of the circumscribed circle of the
triangle ABC,

S =
arA
2

=
1

2
bc sinA

=
1

2
a2

sinB sinC

sinA

=
abc

4R
= 2R2 sinA sinB sinC = rs, s =

1

2
(a+ b+ c).

If A is the point at infinity, then, S = s = rA = b = c = 0 and the above
identities all valid.

For the identity

tan
A

2
=

r

s− a
,
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if the point A is the point at infinity, A = 0, s−a = 0 and the identity holds as
0 = r/0. Meanwhile, if A = π, then the identity holds as tan(π/2) = 0 = 0/s.

In a triangle ABC, let X be the leg of the perpendicular line from A to
the line BC and let Y be the common point of the bisctor line of A and
the line BC. Let P and Q be the tangential points on the line BC with the
incircle of the triangle and the escribed circle in the sector with the angle A,
respectively. Then, we know that

XP

PY
=
XQ

QY
.

If AB = AC, then, of course, X=Y=P=Q. Then, we have:

0

0
=

0

0
= 0.

Let X,Y, Q be the common points with a line and three lines AC, BC and
AB, respectively. Let P be the common point with the line AB and the line
through the point C and the common point of the lines AY and BX. Then,
we know the identity

AP

AQ
=
BP

BQ
.

If two lines XY and AB are parallel, then the point Q may be considered as
the point at infinity. Then, by the interpretation AQ = BQ = 0, the identity
is valid as

AP

0
=
BP

0
= 0.

For the tangential function, note that:

In the formula

tan
θ

2
=

sin θ

1 + cos θ
= ±

√
1− cos θ

1 + cos θ
, (6.1)

for θ = π, we have: 0=0/0.
In the formula

tan z1 ± tan z2 =
sin(z1 + z2)

sin z1 sin z2
, (6.2)

for z1 = π/2, z2 = 0, we have: 0=1/0.

56



In the elementary identity

tan(α + β) =
tanα + tan β

1− tanα tan β
, (6.3)

for the case α = β = π/4, we have

tan
π

2
=

1 + 1

1− 1 · 1
=

2

0
= 0. (6.4)

In the identity √
1− sinα

1 + sinα
=

1

cosα
− tanα, (6.5)

for α = π/2, we have

0 =
1

0
− 0.

For the double angle formula

tan 2α =
2 tanα

1− tan2 α
, (6.6)

for α = π/2, we have:

0 =
2 · 0
1− 0

. (6.7)

In the identity

tan 3α =
2 tanα− tan3 α

1− 3 tan2 α
, (6.8)

for α = π/6, we have

tan
π

2
= 0,

that is right.
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7 Derivatives of a function

On derivatives, we obtain new concepts, from the division by zero. We will
consider the fundamentals, first.

From the viewpoint of the division by zero, when there exists the limit,
at x

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= ∞ (7.1)

or
f ′(x) = −∞, (7.2)

both cases, we can write them as follows:

f ′(x) = 0. (7.3)

This property was derived from the fact that the gradient of the y axis is

zero; that is,

tan
π

2
= 0, (7.4)

that was derived from many geometric properties in Section 3 and in[29], and
also in the formal way from the result 1/0 = 0. Of course, by the division by
zero calculus, we can derive analytically the result.

From the reflection formula of the Psi (Digamma) function

ψ(1− z) = ψ(z) + π
1

tanπz
(7.5)

([1], 258), we have, for z = 1/2,

tan
π

2
= 0.

We will look this fundamental result by elementary functions. For the
function

y =
√
1− x2, (7.6)

y′ =
−x√
1− x2

, (7.7)

and so,
[y′]x=1 = 0, [y′]x=−1 = 0. (7.8)
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Of course, depending on the context, we should refer to the derivatives
of a function at a point from the right hand direction and the left hand
direction.

Here, note that, for x = cos θ, y = sin θ,

dy

dx
=
dy

dθ

(
dx

dθ

)−1

= − cot θ.

Note also that from the expansion

cot z =
1

z
+

+∞∑
ν=−∞,ν ̸=0

(
1

z − νπ
+

1

νπ

)
(7.9)

or the Laurent expansion

cot z =
∞∑

n=−∞

(−1)n22nB2n

(2n)!
z2n−1,

we have
cot 0 = 0.

Note that in (7.9), since(
1

z − νπ
+

1

νπ

)
ν=0

=
1

z
, (7.10)

we can write it simply

cot z =
+∞∑

ν=−∞

(
1

z − νπ
+

1

νπ

)
. (7.11)

The differential equation

y′ = −x
y

(7.12)

with a general solution
x2 + y2 = a2 (7.13)

is satisfied for all the points of the solutions by the division by zero, however,
the differential equations

x+ yy′ = 0, y′ · y
x
= −1 (7.14)
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are not satisfied for the all points of the solutions.
For the function y = log x,

y′ =
1

x
, (7.15)

and so,
[y′]x=0 = 0. (7.16)

For the elementary ordinary differential equation

y′ =
dy

dx
=

1

x
, x > 0, (7.17)

how will be the case at the point x = 0? From its general solution, with a
general constant C

y = log x+ C, (7.18)

we see that

y′(0) =

[
1

x

]
x=0

= 0, (7.19)

that will mean that the division by zero 1/0 = 0 is very natural.
In addition, note that the function y = log x has infinite order derivatives

and all the values are zero at the origin, in the sense of the division by zero.
However, for the derivative of the function y = log x, we have to fix the

sense at the origin, clearly, because the function is not differentiable, but it
has a singularity at the origin. For x > 0, there is no problem for (7.15) and
(7.17). At x = 0, we see that we can not consider the limit in the sense (7.1).
However, x > 0 we have (7.17) and

lim
x→+0

(log x)′ = +∞. (7.20)

In the usual sense, the limit is +∞, but in the present case, in the sense of
the division by zero, we have:[

(log x)′
]
x=0

= 0 (7.21)

and we will be able to understand its sense graphically.
By the new interpretation for the derivative, we can arrange the formulas

for derivatives, by the division by zero. The formula
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dx

dy
=

(
dy

dx

)−1

(7.22)

is very fundamental. Here, we assume that for a local one to one correspon-
dence of the function y = f(x) and for nonvanishing of the denominator

dy

dx
̸= 0. (7.23)

However, if a local one to one correspondence of the function y = f(x) is
ensured like the function y = x3 around the origin, we do not need the
assumption (7.23). Then, for the point dy/dx = 0, we have, by the division
by zero,

dx

dy
= 0. (7.24)

This will mean that the function x = g(y) has the zero derivative and prac-
tically the tangential line at the point is a parallel line to the y- axis. In this
sense the formula (7.22) is valid, even the case dy/dx = 0. The nonvanising
case, of course, the identity

dy

dx
· dx
dy

= 1 (7.25)

holds. When we put the vanishing case, here, we obtain the identity

0× 0 = 1, (7.26)

in a sense. Of course, it is not valid, because (7.25) is unclear for the
vanishing case. Such an interesting property was referred by M. Yamane in
([24]).

In addition, for higher-order derivatives, we note the following: For a
function y = f(x) ∈ C3 whose inverse function x = g(x) is single-valued, we
note the formulas:

d2x

dy2
= −d

2y

dx2

(
dy

dx

)−3

(7.27)

and
d3x

dy3
= −

[
d3y

dx3
dy

dx
− 3

(
d2y

dx2

)2
](

dy

dx

)−5

(7.28)
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are valid, even at a point x0 such that

f(x0) = y0, f
′(x0) = 0 (7.29)

as
d2x

dy2
(y0) =

d3x

dy3
(y0) = 0. (7.30)

Furthermore, the formulas (
1

f

)′

= − f ′

f 2
, (7.31)

(
1

f

)′′

=
2(f ′)2 − ff ′′

f 3
, (7.32)(

1

f

)′′′

=
6ff ′f ′′ − 6(f ′)3 − f 2f ′′′

f 4
, (7.33)

..., and so on, are valid, even the case

f(x0) = 0, (7.34)

at the point x0.
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8 Differential equations

From the viewpoint of the division by zero calculus, we will see many incom-
pleteness mathematics, in particular, in the theory of differential equations in
an undergraduate level; indeed, we have considered our mathematics around
an isolated singular point for analytic functions, however, we did not consider
mathematics at the singular point itself. At the isolated singular point, we
considered our mathematics with the limiting concept, however, the limiting
values to the singular point and the value at the singular point of the function
are different. By the division by zero calculus, we can consider the values and
differential coefficients at the singular point. From this viewpoint, we will be
able to consider differential equations even at singular points. We find many
incomplete statements and problems in many undergraduate textbooks. In
this section, we will point out the problems in concrete ways by examples.

This section is an extension of the paper [3].

8.1 Missing a solution

For the differential equation

2xydx− (x2 − y2)dy = 0,

we have a general solution with a constant C

x2 + y2 = 2Cy.

However, we are missing the solution x = 0. By this expression

x2 + y2

C
= 2y,

for C = 0, by the division by zero, we have the missing solution x = 0.
For the differential equation

x(y′)2 − 2yy′ − x = 0,

we have the general solution

C2x2 − 2Cy − 1 = 0.
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However, x = 0 is also a solution, because

xdy2 − 2ydydx− xdx2 = 0.

From

x2 − 2y

C
− 1

C2
= 0,

by the division by zero, we obtain the solution.
For the differential equation

2y = xy′ − x

y′
,

we have the general solution

2y = Cx2 − 1

C
.

For C = 0, we have the solution y = 0, by the division by zero.
For the differential equation

(x2 − a2)(y′)2 − 2xyy′ − x2 = 0,

we have the general solution

y = Cx2 −
(
a2C +

1

4C

)
.

For C = 0, then y = 0, however, this is not a solution. But, this is the
solution of the differential equation

(x2 − a2)
(y′)2

y
− 2xy′ − x2

y
= 0.

For the differential equation

ydx+ (x2y3 + x)dy = 0,

we have the general solution

− 1

xy
+
y2

2
= C.
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Of course, we have the solution y = 0.
For the differential equation

(3x2 − 1)dy − 3xydx = 0,

we have the general solution

3x2 + 2 = Cy2 + 3.

From
3x2 + 2

C
= y2 +

3

C
,

we have the solution y = 0, by the division by zero.

8.2 Differential equations with singularities

For the differential equation

y′ = −y
x
,

we have the general solution

y =
C

x
.

From the expression
xdy + ydx = 0,

we have also the general solution

x =
C

y
.

Therefore, there is no problem for the origin. Of course, x = 0 and y = 0 are
the solutions.

For the differential equation

y′ =
2x− y

x− y
, (8.1)

we have the beautiful general solution with constant C

2x2 − 2xy + y2 = C. (8.2)
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By the division by zero calculus we see that on the whole points on the
solutions (8.2) the differential equation (8.1) is satisfied. If we do not consider
the division by zero, for y = x(̸= 0), we will have a serious problem. However,
for x = y ̸= 0, we should consider that y′ = 0, not by the division by zero
calculus, but by 1/0 = 0.

For the differential equation

y′ =
2xy

x2 − y2

and for the general solution

x2 + (y − C)2 = C2,

there is no problem at the singular points (0, 0) and x = C, Note that

y′ = − x

x− C
.

For the differential equation

x3y′ = x4 − x2y + 2y2, (8.3)

we have the general solution with constant C

y =
x2(x+ C)

2x+ C
. (8.4)

Note that we have also a solution x = 0, because,

x3dy = (x4 − x2y + 2y2)dx. (8.5)

In particular, note that at (0, 0)

y′(0) =
0

0
, (8.6)

and the general solution (8.4) have the value

y

(
−1

2
C

)
= −1

8
C2, (8.7)

by the division by zero calculus. For C tending to ∞ in the general solution,
we have the another solution y = x2. Then, if we understand C = 0, we see
that the property of the solution is valid.
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8.3 Continuation of solution

We will consider the differential equation

dx

dt
= x2 cos t. (8.8)

Then, as the general solution, we obtain, for a constant C

x =
1

C − sin t
. (8.9)

For x0 ̸= 0, for any given initial value (t0, x0) we obtain the solution satisfying
the initial condition,

x =
1

sin t0 +
1
x0

− sin t
. (8.10)

If ∣∣∣∣sin t0 + 1

x0

∣∣∣∣ < 1, (8.11)

then the solution has many poles and L.S. Pontrjagin stated in his book
that the solution is disconnected by the poles and so, the solution may be
considered as infinitely many solutions.

However, by the viewpoint of the division by zero, the solution takes the
value zero at the singular points and the derivatives at the singular points
are all zero; that is, the solution (8.10) may be understood as one solution.

Furthermore, by the division by zero, the solution (8.10) has its sense
for even the case x0 = 0 and it is the solution of (8.8) satisfying the initial
condition (t0, 0).

We will consider the differential equation

y′ = y2. (8.12)

For a > 0, the solution satisfying y(0) = a is given by

y =
1

1
a
− x

. (8.13)

Note that the solution satisfies on the whole space (−∞,+∞) even at the
singular point x = 1

a
, in the sense of the division by zero, as

y′
(
1

a

)
= y

(
1

a

)
= 0. (8.14)
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8.4 Singular solutions

We will consider the differential equation

(1− y2)dx = y(1− x)dy. (8.15)

By the standard method, we obtain the general solution, for a constant C
(C ̸= 0)

(x− 1)2

C
+ y2 = 1. (8.16)

By the division by zero, for C = 0, we obtain the singular solution

y = ±1.

For the simple Clairaut differential equation

y = px+
1

p
, p =

dy

dx
, (8.17)

we have the general solution

y = Cx+
1

C
, (8.18)

with a general constant C and the singular solution

y2 = 4x. (8.19)

Note that we have also the solution y = 0 from the general solution, by the
division by zero 1/0 = 0 from C = 0 in (8.18).

8.5 Solutions with singularities

1). We will consider the differential equation

y′ =
y2

2x2
. (8.20)

We will consider the solution with an isolated singularity at a point a with
taking the value −2a in the sense of division by zero.

First, by the standard method, we have the general solution, with a con-
stant C

y =
2x

1 + 2Cx
. (8.21)
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From the singularity, we have, C = −1/2a and we obtain the desired solution

y =
2ax

a− x
. (8.22)

Indeed, from the expansion

2ax

a− x
= −2a− 2a2

x− a
, (8.23)

we see that it takes −2a at the point a in the sense of the division by zero.
This function was appeared in ([28]).

2). For any fixed y > 0, we will consider the differential equation

E(x, y)
∂E(x, y)

∂x
=

y2d2

(y − x)3
(8.24)

for 0 ≤ x ≤ y. Then, note that the function

E(x, y) =
y

y − x

√
d2 + (y − x)2 (8.25)

satisfies the differential equation (8.24) satisfying the condition

[E(x, y)]x=y = 0, (8.26)

in the sense of the division by zero. This function was appeared in showing a
strong discontinuity of the curvature center (the inversion of EM diameter)
of the circle movement of the rotation of two circles with radii x and y in
([28]).

3). We will consider the singular differential equation

d2y

dx2
+

3

x

dy

dx
− 3

x2
y = 0. (8.27)

By the series expansion, we obtain the general solution, for any constants
a, b

y =
a

x3
+ bx. (8.28)

We see that by the division by zero

y(0) = 0, y′(0) = b, y′′(0) = 0. (8.29)
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The solution (8.28) has its sense and the equation (8.27) is satisfied even at
the origin. The value y′(0) = b may be given arbitrary, however, in order
to determine the value a, we have to give some value for the regular point
x ̸= 0. Of course, we can give the information at the singular point with the
Laurent coefficient a, that may be interpreted with the value at the singular
point zero, with the division by zero. Indeed, the value a may be considered
at the value

[y(x)x3]x=0 = a. (8.30)

4). Next, we will consider the Euler differential equation

x2
d2y

dx2
+ 4x

dy

dx
+ 2y = 0. (8.31)

We obtain the general solution, for any constants a, b

y =
a

x
+

b

x2
. (8.32)

The solution (8.32) is satisfied even at the origin, by the division by zero and
furthermore, all the derivatives of the solution of any order are all zero at
the origin.

5). We will note that with the general solution, with constants C−2, C−1, C0

y =
C−2

x2
+
C−1

x
+ C0, (8.33)

we obtain the nonlinear ordinary differential equation

x2y′′′ + 6xy′′ + 6y′ = 0. (8.34)

6). For the differential equation

y′ = y2(2x− 3), (8.35)

we have the special solution

y =
1

(x− 1)(2− x)
(8.36)
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on the interval (1, 2) with the singularities at x = 1 and x = 2. Since the
general solution is given by, for a constant C,

y =
1

−x2 + 3x+ C
, (8.37)

we can consider some conditions that determine the special solution (8.37).

8.6 Solutions with an analytic parameter

For example, in the ordinary differential equation

y′′ + 4y′ + 3y = 5e−3x, (8.38)

in order to look for a special solution, by setting y = Aekx we have, from

y′′ + 4y′ + 3y = 5ekx, (8.39)

y =
5ekx

k2 + 4k + 3
. (8.40)

For k = −3, by the division by zero calculus, we obtain

y = e−3x

(
−5

2
x− 5

4

)
, (8.41)

and so, we can obtain the special solution

y = −5

2
xe−3x. (8.42)

For example, for the differential equation

y′′ + a2y = b cosλx, (8.43)

we have a special solution

y =
b

a2 − λ2
cosλx. (8.44)

Then, when for λ = a (reasonance case), by the division by zero calculus, we
obtain the special solution
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y =
bx sin(ax)

2a
+
b cos(ax)

4a2
. (8.45)

Recall the Newton kernel, for N > 2,

ΓN(x, y) =
1

N(2−N)ωN

|x− y|2−N (8.46)

and

Γ2(x, y) =
1

2π
log |x− y|, (8.47)

where

ωN =
2πN/2

NΓ(N/2)
.

From ΓN(x, y), by the division by zero calculus, we have:

1

2π
log |x− y|+ 1

4π
(γ + log π), (8.48)

where γ is the Euler constant.
For the Green function GN(x, y) of the Laplace operator on the ball with

center a and radius r on the Euclidean space of N(N ≥ 3) dimension is given
by

GN(x, y) = ∥x− y∥2−N −
(

r

∥y − a∥
1

∥x− y∗∥

)N−2

, (8.49)

where y∗ is the inversion of y

y∗ − a =

(
r

∥y − a∥

)2

(y − a). (8.50)

By N = 2, we obtain the corresponding formula, by the division by zero
calculus,

G2(x, y) = log

(
∥y − a∥

r

∥x− y∗∥
∥x− y∥

)
(8.51)

([4], page 91).

We can find many examples.
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8.7 Special reductions by division by zero of solutions

For the differential equation

y′′ − (a+ b)y′ + aby = ecx, c ̸= a, b; a ̸= b,

we have the special solution

y =
ecx

(c− a)(c− b)
.

If c = a( ̸= b), then, by the division by zero calculus, we have

y =
xeax

a− b
.

If c = a = b, then, by the division by zero calculus, we have

y =
x2eax

2
.

For the differential equation

m
d2x

dt2
+ γ

dx

dt
+ kx = 0,

we obtain the general solution, for γ2 > 4mk

x(t) = e−αt
(
C1e

βt + C2e
−βt
)

with
α =

γ

2m
and

β =
1

2m

√
γ2 − 4mk.

For m = 0, by the division by zero calculus we obatin the reasonable solution
α = 0 and γ = −k/γ.

We will consider the differential equation, for a constant K

y′ = Ry.

Then, we have the general solution

y(x) = y(0)eRt.
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For the differential equation

y′ = Ry
(
1− y

K

)
,

we have the solution

y =
y(0)eRt

1 + y(0)(eRt−1)
K

.

If K = 0, then, by the division by zero, we obtain the previous result,
immediately.

We will consider the fundamental ordinary differential equations

x′′(t) = g − kx′(t) (8.52)

with the initial conditions

x(0) = −h, x′(0) = 0. (8.53)

Then we have the solution

x(t) =
g

k
t+

g(e−kt − 1)

k2
− h. (8.54)

Then, for k = 0, we obtain, immediately, by the division by zero calculus

x(t) =
1

2
gt2 − h. (8.55)

For the differential equation

x′′(t) = g − k(x′(t))2 (8.56)

satisfying the same condition with (8.54), we obtain the solution

x(t) =
1

2k
log

(
e2t

√
kg + 1

)2
4e2t

√
kg

− h. (8.57)

Then, for k = 0, we obtain

x(t) =
1

2
gt2 − h. (8.58)

immediately, by the division by zero calculus.
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For the differential equation

mx′′(t) = −mg − rx′(t),

the solution satisfying the conditions x(0) = x0, x
′(0) = v0 is given by

x(t) = −g
r
mt+ A+B exp

(
− r

m
t
)
,

with
A = x0 −B,B = −m

r

(m
r
g + v0

)
.

For r = 0, by the division by zero calculus, we have the reasonable solution

x(t) = −1

2
gt+ v0t+ x0.

For the differential equation

x′′(t) = −g + k(x′(t))2 (8.59)

satisfying the initial conditions

x(0) = 0, x′(0) = V, (8.60)

we have

x′(t) = −
√
g

k
tan(

√
kgt− α), (8.61)

with

α = tan−1

√
k

g
V (8.62)

and the solution

x(t) =
1

k
log

cos
(√

kgt− α
)

cosα
. (8.63)

Then we obtain for k = 0, by the division by zero calculus

x′(t) = −gt+ V (8.64)

and

x(t) = −1

2
gt2 + V t. (8.65)
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We will consider the typical ordinary differential equation

mx′′(t) = mg −m(λx′(t) + µ(x′(t))2), (8.66)

satisfying the initial conditions

x(0) = x′(0) = 0. (8.67)

Then we have the solution

x(t) =
−λ+

√
λ2 + 4µg

2µ
t+

1

µ
log[(

−λ+
√
λ2 + 4µg

2µ
exp(−

√
λ2 + 4µgt)

(8.68)

+
λ+

√
λ2 + 4µg

2µ
)

µ√
λ2 + 4µg

].

Then, if µ = 0, we obtain, immediately, by the division by zero calculus

x(t) =
g

λ
t+

1

λ2
ge−λt − g

λ2
. (8.69)

Furthermore, if λ = 0, then we have

x(t) =
1

2
gt2. (8.70)

We can find many and many such examples. However, note that the
following fact.

For the differential equation

y′′′ + a2y′ = 0, (8.71)

we obtain the general solution, for a ̸= 0

y = A sin ax+B cos ax+ C. (8.72)

For a = 0, from this general solution, how can we obtain the correspondent
solution

y = Ax2 +Bx+ C, (8.73)

naturally?
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For the differential equation

y′ = aeλxy2 + afeλxy + λf, (8.74)

we obtain a special solution, for a ̸= 0

y = −λ
a
e−λx. (8.75)

For a = 0, from this solution, how can we obtain the correspondent solution

y = λfx+ C, (8.76)

naturally?

8.8 Partial differential equations

For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ bx

∂w

∂x
+ (cx+ d)w, (8.77)

we have a special solution

w(x, t) = exp

[
−c
b
x+

(
d+

ac2

b2

)
t

]
. (8.78)

For b = 0, how will be the correspondent solution? If b = 0, then c = 0 and

c

b
=

0

0
= 0, (8.79)

and we obtain the correspondent solution.
For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ (beβt + c)w, (8.80)

we have special solutions

w(x, t) = (Ax+B) exp

[
b

β
eβt + ct

]
, (8.81)
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w(x, t) = A(x2 + 2at) exp

[
b

β
eβt + ct

]
, (8.82)

and

w(x, t) = A exp

[
λx+ aλ2t+

b

β
eβt + ct

]
. (8.83)

Then, we see that for β = 0, by the interpretation[
1

β
eβt
]
β=0

= t, (8.84)

we can obtain the correspondent solutions.
For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ (bxeβx + c)w, (8.85)

we have a special solution

w(x, t) = A exp

[
b

β
xeβt +

ab2

2β3
e2βt + ct

]
. (8.86)

Then, for β = 0, by the interpretation[
1

βj
eβt
]
β=0

=
1

j!
tj, (8.87)

we can obtain the correspondent solution.
However, the above properties will be, in general, complicated.
For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ bw, (8.88)

we have the fundamental solution

w(x, t) =
1

2
√
πat

exp

(
− x2

4at
+ bt

)
. (8.89)

For a = 0, we have the correspondent solution

w(x, t) = exp bt. (8.90)
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For the factor
1

2
√
πat

exp

(
− x2

4at

)
(8.91)

we have, for letting a→ 0,
δ(x), (8.92)

meanwhile, at a = 0, by the division by zero calculus, we have 0. So, the
reduction problem is a delicate open problem.

For the partial differential equation

∂w

∂t
= a

∂2w

∂x2
+ (−bx2 + ct+ d)w, (8.93)

we have a special solution

w(x, t) = exp

[
1

2

√
b

a
x2 +

1

2
ct2 + (

√
ab+ d)t

]
. (8.94)

For a = 0, how will be the correspondent solution? Since we have the solution

w(x, t) = exp

[
−bx2t+ 1

2
ct2 + dt

]
, (8.95)

for the factor
1

2

√
b

a
x2 (8.96)

we have to have
−bx2t. (8.97)

8.9 Open problems

As the important open problems, we would like to propose them clearly.
We have considered our mathematics around an isolated singular point for

analytic functions, however, we did not consider mathematics at the singular
point itself. At the isolated singular point, we consider our mathematics with
the limiting concept, however, the limiting values to the singular point and
on the values at the singular point in the sense of division by zero calculus
are different. By the division by zero calculus, we can consider the values and
differential coefficients at the singular point. We thus have a general open

79



problem discussing our mathematics on a domain containing the singular
point.

We refer to the reduction problems by concrete examples; there we found
the delicate property. For this interesting property we expect some general
theory.
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9 Euclidean spaces and division by zero

In this section, we will see the division by zero properties on the Euclidean
spaces. Since the impact of the division by zero and division by zero calculus
is widely expanded in elementary mathematics, here, elementary topics will
be introduced as the first stage.

9.1 Broken phenomena of figures by area and volume

The strong discontinuity of the division by zero around the point at infinity
will be appeared as the broken of various figures. These phenomena may
be looked in many situations as the universe one. However, the simplest
cases are disc and sphere (ball) with radius 1/R. When R → +0, the areas
and volumes of discs and balls tend to +∞, respectively, however, when
R = 0, they are zero, because they become the half-plane and half-space,
respectively. These facts may be also looked by analytic geometry, as we
see later. However, the results are clear already from the definition of the
division by zero:

For this fact, note the following:
The behavior of the space around the point at infinity may be considered

by that of the origin by the linear transform W = 1/z (see [2]). We thus see
that

lim
z→∞

z = ∞, (9.1)

however,
[z]z=∞ = 0, (9.2)

by the division by zero. Here, [z]z=∞ denotes the value of the function W =
z at the topological point at the infinity in one point compactification by
Aleksandrov. The difference of (9.1) and (9.2) is very important as we see
clearly by the functionW = 1/z and the behavior at the origin. The limiting
value to the origin and the value at the origin are different. For surprising
results, we will state the property in the real space as follows:

lim
x→+∞

x = +∞, lim
x→−∞

x = −∞, (9.3)

however,
[x]+∞ = 0, [x]−∞ = 0. (9.4)
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Of course, two points +∞ and −∞ are the same point as the point at infinity.
However, ± will be convenient in order to show the approach directions. In
[29], we gave many examples for this property.

In particular, in z → ∞ in (9.1), ∞ represents the topological point on
the Riemann sphere, meanwhile ∞ in the left hand side in (9.1) represents
the limit by means of the ϵ - δ logic.

9.2 Parallel lines

We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2. (9.5)

The common point is given by, if a1b2 − a2b1 ̸= 0; that is, the lines are not
parallel (

b1c2 − b2c1
a1b2 − a2b1

,
a2c1 − a1c2
a1b2 − a2b1

)
. (9.6)

By the division by zero, we can understand that if a1b2 − a2b1 = 0, then the
commom point is always given by

(0, 0), (9.7)

even the two lines are the same. This fact shows that the image of the
Euclidean space in Section 3 is right.

In particular, note that the concept of parallel lines is very important
in the Euclidean plane and non-Euclidean geometry. In our sense, there is
no parallel line and all lines pass the origin. This will be our world in the
Euclidean plane. However, this property is not geometrical and has a strong
discontinuity. This surprising property may be looked also clearly by the
polar representation of a line.

We write a line by the polar coordinate

r =
d

cos(θ − α)
, (9.8)

where d = OH > 0 is the distance of the origin O and the line such that OH
and the line is orthogonal and H is on the line, α is the angle of the line OH
and the positive x axis, and θ is the angle OP (P = (r, θ) on the line) and
the positive x axis. Then, if θ−α = π/2: that is, OP and the line is parallel
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and P is the point at infinity, then we see that r = 0 by the division by zero
calculus; the point at infinity is represented by zero and we can consider that
the line passes the origin, however, it is in a discontinuous way.

This will mean simply that any line arrives at the point at infinity and
the point is represented by zero and so, for the line we can add the point at
the origin. In this sense, we can add the origin to any line as the point of the
compactification of the line. This surprising new property may be looked in
our mathematics globally.

The distance d from the origin to the line determined by the two planes

Πk : akx+ bky + ckz = 1, k = 1, 2, (9.9)

is given by

d =

√
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

(b1c2 − b2c1)2 + (c1a2 − c2a1)2 + (a1b2 − a2b1)2
. (9.10)

If the two lines are coincident, then, of course, d = 0. However, if the two
planes are parallel, by the division by zero, d = 0. This will mean that any
plane contains the origin as in a line.

9.3 Tangential lines and tan π
2 = 0

We looked the very fundamental and important formula tan π
2
= 0 in Section

6. In this subsection, for its importance we will furthermore see its various
geometrical meanings.

We consider the high tan θ
(
0 ≤ θ ≤ π

2

)
that is given by the common point

of two lines y = (tan θ)x and x = 1 on the (x, y) plane. Then,

tan θ −→ ∞; θ −→ π

2
.

However,

tan
π

2
= 0,

by the division by zero. The result will show that, when θ = π/2, two lines
y = (tan θ)x and x = 1 do not have a common point, because they are
parallel in the usual sense. However, in the sense of the division by zero,
parallel lines have the common point (0, 0). Therefore, we can see the result
tan π

2
= 0 following our new space idea.

83



We consider general lines represented by

ax+ by + c = 0, a′x+ b′y + c′ = 0. (9.11)

The gradients are given by

k = −a
b
, k′ = −a

′

b′
, (9.12)

respectively. In particular, note that if b = 0, then k = 0, by the division by
zero.

If kk′ = −1, then the lines are orthogonal; that is,

tan
π

2
= 0 = ± k − k′

1 + kk′
, (9.13)

which shows that the division by zero 1/0 = 0 and orthogonality meets in a
very good way.

Furthermore, even in the case of polar coordinates x = r cos θ, y = r sin θ,
we can see the division by zero

tan
π

2
=
y

0
= 0. (9.14)

In particular, note that:
From the expansion

tan z = −
+∞∑

ν=−∞

(
1

z − (2ν − 1)π/2
+

1

(2ν − 1)π/2

)
, (9.15)

tan
π

2
= 0.

The division by zero may be looked even in the rotation of the coordinates.
We will consider a 2 dimensional curve

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0 (9.16)

and a rotation defined by

x = X cos θ − Y sin θ, y = X sin θ + Y cos θ. (9.17)
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Then, we write, by inserting these (x, y)

AX2 + 2HXY +BY 2 + 2GX + 2FY + C = 0. (9.18)

Then,

H = 0 ⇐⇒ tan 2θ =
2h

a− b
. (9.19)

If a = b, then, by the division by zero,

tan
π

2
= 0, θ =

π

4
. (9.20)

For h2 > ab, the equation

ax2 + 2hxy + by2 = 0 (9.21)

represents 2 lines and the angle θ made by two lines is given by

tan θ = ±2
√
h2 − ab

a+ b
. (9.22)

If h2 − ab = 0, then, of course, θ = 0. If a + b = 0, then, by the division by
zero, θ = π/2 from tan θ = 0.

For a hyperbolic function

x2

a2
− y2

b2
= 1; a, b > 0 (9.23)

the angle θ maden by the two asymptotic lines y = ±(b/a)x is given by

tan θ =
2(b/a)

1− (b/a)2
. (9.24)

If a = b, then θ = π/2 from tan θ = 0.
For a line

x cos θ + y sin θ − p = 0 (9.25)

and for data (xj, yj), the minimum of
∑n

j=1 d
2
j for the distance dj of the plane

and the point (xj, yj) is attained for the case

tan 2θ =
2γxyσxσy
σ2
x − σ2

y

, (9.26)
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where

γxy =
n
∑

j xjyj − (
∑

j xj)(
∑

j yj)

n2σxσy

and

σx =
1

n

√
n
∑
j

x2j − (
∑
j

xj)2.

If σ2
x = σ2

y , then θ = π/4 from tan 2θ = 0.
We consider the unit circle with center at the origin on the (x, y) plane.

We consider the tangential line for the unit circle at the point that is the
common point of the unit circle and the line y = (tan θ)x

(
0 ≤ θ ≤ π

2

)
. Then,

the distance Rθ between the common point and the common point of the
tangential line and x-axis is given by

Rθ = tan θ.

Then,
R0 = tan 0 = 0,

and
tan θ −→ ∞; θ −→ π

2
.

However,

Rπ/2 = tan
π

2
= 0.

This example shows also that by the stereoprojection mapping of the unit
sphere with center the origin (0, 0, 0) onto the plane, the north pole corre-
sponds to the origin (0, 0).

In this case, we consider the orthogonal circle CRθ
with the unit circle

through at the common point and the symmetric point with respect to the
x-axis with center ((cos θ)−1, 0). Then, the circle CRθ

is as follows:
CR0 is the point (1, 0) with curvature zero, and CRπ/2

(that is, when
Rθ = ∞, in the common sense) is the y-axis and its curvature is also zero.
Meanwhile, by the division by zero, for θ = π/2 we have the same result,
because (cos(π/2))−1 = 0.

Note that from the expansion

1

cos z
= 1 +

+∞∑
ν=−∞

(−1)ν
(

1

z − (2ν − 1)π/2
+

2

(2ν − 1)π

)
, (9.27)
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(
1

cos z

)(π
2

)
= 1− 4

π

∞∑
ν=0

(−1)ν

2ν + 1
= 0.

The point (cos θ, 0) and ((cos θ)−1, 0) are the symmetric points with respec-
tive to the unit circle, and the origin corresponds to the origin.

In particular, the formal calculation√
1 +R2

π/2 = 1 (9.28)

is not good. The identity cos2 θ + sin2 θ = 1 is valid always, however 1 +
tan2 θ = (cos θ)−2 is not valid for θ = π/2.

Note that from the expansin

1

cos2 z
=

+∞∑
ν=−∞

1

(z − (2ν − 1)π/2)2
, (9.29)

(
1

cos2 z

)(π
2

)
=

2

π2

∞∑
ν=1

1

ν2
=

1

3
.

On the point (p, q)(0 ≤ p, q ≤ 1) on the unit circle, we consider the
tangential line Lp,q of the unit circle. Then, the common points of the line
Lp,q with x-axis and y-axis are (1/p, 0) and (0, 1/q), respectively. Then, the
area Sp of the triangle formed by the three points (0, 0), (1/p, 0) and (0, 1/q)
is given by

Sp =
1

2pq
.

Then,
p −→ 0; Sp −→ +∞,

however,
S0 = 0

(H. Michiwaki: 2015.12.5.).
We denote the point on the unit circle on the (x, y) with (cos θ, sin θ)

for the angle θ with the positive real line. Then, the tangential line of the
unit circle at the point meets at the point (Rθ, 0) for Rθ = [cos θ]−1 with the
x-axis for the case θ ̸= π/2. Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞, (9.30)
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θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞, (9.31)

however,

Rπ/2 =
[
cos
(π
2

)]−1

= 0, (9.32)

by the division by zero. We can see the strong discontinuity of the point
(Rθ, 0) at θ = π/2 (H. Michiwaki: 2015.12.5.).

The line through the points (0, 1) and (cos θ, sin θ) meets the x axis with
the point (Rθ, 0) for the case θ ̸= π/2 by

Rθ =
cos θ

1− sin θ
. (9.33)

Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞, (9.34)

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞, (9.35)

however,
Rπ/2 = 0, (9.36)

by the division by zero. We can see the strong discontinuity of the point
(Rθ, 0) at θ = π/2.

Note also that [
1− sin

(π
2

)]−1

= 0.

For a smooth curve C : r = r(θ), r ̸= 0, we consider the tangential line
at P and a near point Q on the curve C. Let H be the nearest point on the
line OP, O is the pole of the coordinate and δθ is the angle for the line OP
to the line OG. Then, we have

tanΘ := lim
δθ→0

QH

PH
=
r(θ)

r′(θ)
. (9.37)

If r′(θ0) = 0, then tanΘ = 0 and Θ = π/2, and the result is reasonable.
For the parabolic equation y2 = 4ax, a > 0, at a point (x, y), the normal

line shadow on the x-axis is given by

|yy′| = 2a. (9.38)
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At the origin, we have, from y′(0) = 0,

|yy′| = 0. (9.39)

For the equation

xmyn = am+n, a,m, n > 0, (9.40)

let P be a point (x, y) on the curve. Let T (x.x + (n/m)x) be the x cut of
the tagential line of the curve and put M(x, 0). Then, we have

TM : OM = − n

m
. (9.41)

This formula is valid for the cases n = 0 and m = 0, by the division by zero.
Note that for the both lines x = a and y = a, y′ = 0.

9.4 Two Circles

We consider two circles with radii a, b with centers (a, 0); a > 0 and (−b, 0); b >
0, respectively. Then, the external common tangents La,b (we assume that
a < b and that La,b is not the y axis) has the common point with the x-axis
at (Ra, 0) which is given by, by fixing b

Ra =
2ab

b− a
. (9.42)

We consider the circle CRa with center at (Ra, 0) with radius Ra. Then,

a→ b =⇒ Ra → ∞,

however, when a = b, then we have Rb = −2b by the division by zero, from
the identity

2ab

b− a
= −2b− 2b2

a− b
.

Meanwhile, when we interpret (9.42) as

Ra =
−1

a− b
· 2ab, (9.43)

we have, for a = b, Rb = 0. It means that the circle CRb
is the y axis with

curvature zero through the origin (0, 0).
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The above formulas will show strong discontinuity for the change of the
a and b from a = b (H. Okumura: 2015.10.29.).

We denote the circles Sj:

(x− aj)
2 + (y − bj)

2 = r2j . (9.44)

Then, the common point (X,Y ) of the co- and exterior tangential lines of
the circles Sj for j = 1, 2,

(X,Y ) =

(
r1a2 − r2a1
r1 − r2

,
r1b2 − r2b1
r1 − r2

)
. (9.45)

We will fix the circle S2. Then, from the expansion

r1a2 − r2a1
r1 − r2

=
r2(a2 − a1)

r1 − r2
+ a2 (9.46)

for r1 = r2, by the division by zero, we have

(X,Y ) = (a2, b2). (9.47)

Meanwhile, when we interpret (9.46) as

r1a2 − r2a1
r1 − r2

=
1

r1 − r2
· (r1a2 − r2a1), (9.48)

we obtain that
(X,Y ) = (0, 0), (9.49)

that is reasonable. However, the both cases, the results show strong discon-
tinuity.

9.5 Newton’s method

The Newton’s method is fundamental when we look for the solutions for some
general equation f(x) = 0 numerically and practically. We will refer to its
prototype case.

We will assume that a function y = f(x) belongs to C1 class. We consider
the sequence {xn} for n = 0, 1, 2, . . . , n, . . . , defined by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . . (9.50)
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When f(xn) = 0, we have
xn+1 = xn, (9.51)

in the reasonable way. Even the case f ′(xn) = 0, we have also the reasonable
result (9.51), by the division by zero.

9.6 Halley’s method

As in the Newton’s method, in order to look for the solution of the equation
f(x) = 0, we consider the series

xn+1 = xn −
2f(xn)f

′(xn)

a[f ′(xn)]2 − f(xn)f ′′(xn)

and

xn+1 = xn −
f(xn)

f ′(xn)

[
1− f(xn)

f ′(xn)

f ′′(xn)

2f ′(xn)

]−1

.

If f(xn) = 0, the processes stop and there is no problem. Even the case
f ′(xn) = 0, the situation is similar.

9.7 Cauchy’s mean value theorem

For the Cauchy mean value theorem: for f, g ∈ Differ(a, b), differentiable,
and ∈ C0[a, b], continuous and if g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0, then
there exists ξ ∈ (a, b) satisfying that

f(a)− f(b)

g(a)− g(b)
=
f ′(ξ)

g′(ξ)
, (9.52)

we do not need the assumptions g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0, by the
division by zero. Indeed, if g(a) = g(b), then, by the Rolle theorem, there
exists ξ ∈ (a, b) such that g′(ξ) = 0. Then, the both terms are zero and the
equality is valid.

For f, g ∈ C2[a, b], there exists a ξ ∈ (a, b) satisfying

f(b)− f(a)− (b− a)f ′(a)

g(b)− g(a)− (b− a)g′(a)
=
f ′′(a)

g′′(a)
.

Here, we do not need the assumption

g(b)− g(a)− (b− a)g′(a) ̸= 0,
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by the division by zero.
For a function f ∈ C2 satisfying f(α) = 0, f ′(α) > 0 and for a small k,

for the solution x = α + δ, we obtain

δ ∼
−f ′(α) +

√
f ′(α)2 + 2kf ′′(α)

f ′′(α)
.

If here f ′′(α) = 0, then, the team should be replaced by

k

f ′(α)

([58], 71 page.). This modification can be derived by the division by zero
calculus, because in √

A+ 2kx

x
,

for x = 0
k√
A
.

9.8 Length of tangential lines

We will consider a function y = f(x) of C1 class on the real line. We consider
the tangential line through (x, f(x))

Y = f ′(x)(X − x) + f(x). (9.53)

Then, the length (or distance) d(x) between the point (x, f(x)) and
(
x− f(x)

f ′(x)
, 0
)

is given by, for f ′(x) ̸= 0

d(x) = |f(x)|

√
1 +

1

f ′(x)2
. (9.54)

How will be the case f ′(x∗) = 0? Then, the division by zero shows that

d(x∗) = |f(x∗)|. (9.55)

Meanwhile, the x axis point (Xt, 0) of the tangential line at (x, y) and y
axis point (0, Yn) of the normal line at (x, y) are given by

Xt = x− f(x)

f ′(x)
(9.56)
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and
Yn = y +

x

f ′(x)
, (9.57)

respectively. Then, if f ′(x) = 0, we obtain the reasonable results:

Xt = x, Yn = y. (9.58)

9.9 Curvature and center of curvature

We will assume that a function y = f(x) is of class C2. Then, the curvature
radius ρ and the center O(x, y) of the curvature at point (x, f(x)) are given
by

ρ(x, y) =
(1 + (y′)2)3/2

y′′
(9.59)

and

O(x, y) =

(
x− 1 + (y′)2

y′′
y′, y +

1 + (y′)2

y′′

)
, (9.60)

respectively. Then, if y′′ = 0, we have:

ρ(x, y) = 0 (9.61)

and
O(x, y) = (x, y), (9.62)

by the division by zero. They are reasonable.
We will consider a curve r = r(s), s = s(t) of class C2. Then,

v =
dr

dt
, t =

dr(s)

ds
, v =

ds

dt
,
dt(s)

ds
=

1

ρ
n,

by the principal normal unit vector n. Then, we see that

a =
dv

dt
=
dv

dt
t+

v2

ρ
n.

If ρ(s0) = 0, then

a(s0) =

[
dv

dt
t

]
s=s0

(9.63)

and [
v2

ρ

]
s=s0

= ∞ (9.64)

will be funny. It will be the zero.
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9.10 n = 2, 1, 0 regular polygons inscribed in a disc

We consider n regular polygons inscribed in a fixed disc with radius a. Then
we note that their area Sn and the lengths Ln of the sum of the sides are
given by

Sn =
na2

2
sin

2π

n
(9.65)

and
Ln = 2na sin

π

n
, (9.66)

respectively. For n ≥ 3, the results are clear.
For n = 2, we will consider two diameters that are the same. We can con-

sider it as a generalized regular polygon inscribed in the disc as a degenerate
case. Then, S2 = 0 and L2 = 4a, and the general formulas are valid.

Next, we will consider the case n = 1. Then the corresponding regular
polygon is a just diameter of the disc. Then, S1 = 0 and L1 = 0 that will
mean that any regular polygon inscribed in the disc may not be formed and
so its area and length of the side are zero.

For a n = 1 triangle, if 1 means one side, then we can interpretate as in
the above, however, if we consider 1 as one vertex, the above situation may
be consider as one point on the circle which coincides with Sl = Ll = 0.

Now we will consider the case n = 0. Then, by the division by zero
calculus, we obtain that S0 = πa2 and L0 = 2πa. Note that they are the area
and the length of the disc. How to understand the results? Imagine contrary
n tending to infinity, then the corresponding regular polygons inscribed in
the disc tend to the disc. Recall our new idea that the point at infinity is
represented by 0. Therefore, the results say that n = 0 regular polygons are
n = ∞ regular polygons inscribed in the disc in a sense and they are the
disc. This is our interpretation of the theorem:

Theorem. n = 0 regular polygons inscribed in a disc are the whole disc.

In addition, note that each inner angle An of a general n regular polygon
inscribed in a fixed disc with radius a is given by

An =

(
1− 2

n

)
π. (9.67)

94



The circumstances are similar for n regular polygons circumscribed in the
disc, because the corresponding data are given by

Sn = na2 tan
π

n
(9.68)

and
Ln = 2na tan

π

n
, (9.69)

and (9.67), respectively.

9.11 Our life figure

As an interesting figure which shows an interesting relation between 0 and
infinity, we will consider a sector ∆α on the complex z = x+ iy plane

∆α =
{
| arg z| < α; 0 < α <

π

2

}
.

We will consider a disc inscribed in the sector ∆α whose center (k, 0) with
radius r. Then, we have

r = k sinα. (9.70)

Then, note that as k tends to zero, r tends to zero, meanwhile k tends to
+∞, r tends to +∞. However, by our division by zero calculus, we see that
immediately that

[r]r=∞ = 0. (9.71)

On the sector, we see that from the origin as the point 0, the inscribed
discs are increasing endlessly, however their final disc reduces to the origin
suddenly - it seems that the whole process looks like our life in the viewpoint
of our initial and final.

9.12 H. Okumura’s example

The suprising example by H. Okumura will show a new phenomenon at the
point at infinity.

On the sector ∆α, we shall change the angle and we consider a fixed circle
Ca, a > 0 with radius a inscribed in the sectors. We see that when the circle
tends to +∞, the angles α tend to zero. How will be the case α = 0? Then,
we will not be able to see the position of the circle. Surprisingly enough,
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then Ca is the circle with center at the origin 0. This result is derived from
the division by zero calculus for the formula

k =
a

sinα
. (9.72)

The two lines arg z = α and arg z = −α were tangential lines of the circle
Ca and now they are the positive real line. The gradient of the positive real
line is of course zero. Note here that the gradient of the positive imaginary
line is zero by the division by zero calculus that means tan π

2
= 0. Therefore,

we can understand that the positive real line is still a tangential line of the
circle Ca.

This will show some great relation between zero and infinity. We can see
some mysterious property around the point at infinity.

9.13 Interpretation by analytic geometry

The results in Subsection 9.1 may be interpretated beautifully by analytic
geometry and matrix theory.

We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2, 3. (9.73)

The area S of the triangle surrounded by these lines is given by

S = ±1

2
· △2

D1D2D3

, (9.74)

where △ is ∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
and Dk is the co-factor of △ with respect to ck. Dk = 0 if and only if
the corresponding lines are parallel. △ = 0 if and only if the three lines
are parallel or they have a common point. We can see that the degeneracy
(broken) of the triangle may be interpretated by S ̸= 0 beautifully, by the
division by zero.

For a function

S(x, y) = a(x2 + y2) + 2gx+ 2fy + c, (9.75)
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the radius R of the circle S(x, y) = 0 is given by

R =

√
g2 + f 2 − ac

a2
. (9.76)

If a = 0, then the area πR2 of the disc is zero, by the division by zero; that
is, the circle is a line (degenerate).

The center of the circle (9.75) is given by(
−g
a
,−f

a

)
. (9.77)

Therefore, the center of a general line

2gx+ 2fy + c = 0 (9.78)

may be considered as the origin (0, 0), by the division by zero.
On the compile z plane, a circle containing a line is represented by the

equation
azz + αz + αz + c = 0, (9.79)

for a, c : real and ac ≤ αα. Then the center and the radius are given by

−α
a

(9.80)

and √
αα− ac

a
, (9.81)

respectively. If a = 0, then it is a line with center (0, 0) with radius 0, by the
division by zero. The curvature of the line is, of course, zero, by the division
by zero.

We consider the functions

Sj(x, y) = aj(x
2 + y2) + 2gjx+ 2fjy + cj. (9.82)

The distance d of the centers of the circles S1(x, y) = 0 and S2(x, y) = 0 is
given by

d2 =
g21 + f 2

1

a21
− 2

g1g2 + f1f2
a1a2

+
g22 + f 2

2

a22
. (9.83)
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If a1 = 0, then by the division by zero

d2 =
g22 + f 2

2

a22
. (9.84)

Then, S1(x, y) = 0 is a line and its center is the origin (0, 0). Therefore, the
result is very reasonable.

The distance d between two lines given by

x− aj
L1

=
y − bj
Mj

=
z − cj
Nj

, j = 1, 2, (9.85)

is given by

d =

∣∣∣∣∣∣
a2 − a1 b2 − b1 c2 − c1
L1 M1 N1

L2 M2 N2

∣∣∣∣∣∣√
(MlN2 −M2N1)2 + (NlL2 −N2L1)2 + (LlM2 − L2M1)2

. (9.86)

If two lines are parallel, then we have d = 0.

9.14 Interpretation with volumes

We write four planes by

πk : akx+ bky + ckz + dk = 0, k = 1, 2, 3, 4. (9.87)

The volume V of the tetrahedron surrounded by these planes is given by

V = ±1

6
· △2

D1D2D3D4

, (9.88)

where △ is ∣∣∣∣∣∣∣∣
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

∣∣∣∣∣∣∣∣
and Dk is the co-factor of △ with respect to dk. Dk = 0 if and only if two
planes of the corresponding three planes are parallel. △ = 0 if and only if the
four planes πk contain four lines Lk( for each k, respectively) that are parallel
or have a common line. We can see that the degeneracy of the tetrahedron
may be interpretated by V ̸= 0 beautifully, by the division by zero.
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10 Applications to Wasan geometry

For the sake of the great contributions toWasan geometry by H. Okumura, we
found new interesting results as applications of the division by zero calculus.
We will introduce typical results, however, the results and their impacts will
create some new fields in mathematics.

10.1 Circle and line

We will consider the fixed circle x2+(y− b)2 = b2, b > 0. For a taching circle
with this circle and the x axis is represented by

(x− 2
√
ab)2 + (y − a)2 = a2.

Then, we have
x2 + y2√

a
− 4

√
bx = 2

√
a(y − 2b)

and
x2 + y2

a
− 4

√
b

a
x = 2(y − 2b).

Then, by the division by zero, we have the reasonable results the origin, that
is the point circle of the origin, the y axis and the line y = 2b. (H. Okumura:
2017.10.13.).

10.2 Three touching cirlces exteriously

For real numbers z, and a, b > 0, the point (0, 2
√
ab/z) is denoted by Vz. H.

Okumura and M. Watanabe gave the theorem in [36]:

Theorem 7. The circle touching the circle α: (x−a)2+ y2 = a2 and the
circle β: (x+ b)2 + y2 = b2 at points different from the origin O and passing
through Vz±1 is represented by(

x− b− a

z2 − 1

)2

+

(
y − 2z

√
ab

z2 − 1

)2

=

(
a+ b

z2 − 1

)2

(10.1)

for a real number z ̸= ±1
The common external tangents of α and β can be expressed by the equa-

tions
(a− b)x∓ 2

√
aby + 2ab = 0. (10.2)
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Anyhow the authors give the exact representation with a parameter of the
general circles touching with two circles touching each other. The common
external tangent may be looked a circle touching for the general circles (as
we know we can consider circles and lines as same ones in complex analysis
or with the stereographic projection), however, they stated in the proof of
the theorem that the common external tangents are obtained by the limiting
z → ±1. However, its logic will have a delicate problem.

Following our concept of the division by zero calculus, we will consider the
case z2 = 1 for the singular points in the general parametric representation
of the touching circles.

10.2.1 Results

First, for z = 1 and z = −1, respectively by the division by zero calculus, we
have from (10.1), surprisingly

x2 +
b− a

2
x+ y2 ∓

√
aby − ab = 0, (10.3)

respectively.
Secondly, multiplying (10.1) by (z2 − 1), we immediately obtain surpris-

ingly (10.2) for z = 1 and z = −1, respectively by the division by zero
calculus.

In the usual way, when we consider the limiting z → ∞ for (10.1), we
obtain the trivial result of the point circle of the origin. However, the result
may be obtained by the division by zero calculus at w = 0 by setting w = 1/z.

10.2.2 On the circle appeared

The circle (10.3) meets the circles α in two points

Pa

(
2rA, 2rA

√
a

b

)
, Qa

(
2ab

9a+ b
,−6a

√
ab

9a+ b

)
,

where rA = ab/(a+ b). Also it meet β in points

Pb

(
−2rA, 2rA

√
b

a

)
, Qb

(
−2ab

a+ 9b
,−6b

√
ab

a+ 9b

)
.
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The line PaPb is the common tangentials of the two circles α and β on the up-

per half plane. The lines PaQa and PbQb intersect at the pointR :
(
0,−

√
ab
)
,

which lies on the remaining tangencials of α and β. Furthermore, the circle
(10.3) is orthogonal to the circle with center R passing through the origin.

The source of this subsection is [41].

10.3 The Descartes circle theorem

We recall the famous and beautiful theorem ([21, 57]):

Theorem (Descartes) Let Ci (i = 1, 2, 3) be circles touching to each
other of radii ri. If a circle C4 touches the three circles, then its radius r4 is
given by

1

r4
=

1

r1
+

1

r2
+

1

r3
± 2

√
1

r1r2
+

1

r2r3
+

1

r3r1
. (10.4)

As well-known, circles and lines may be looked as the same ones in com-
plex analysis, in the sense of stereographic projection and many reasons.
Therefore, we will consider whether the theorem is valid for line cases and
point cases for circles. Here, we will discuss this problem clearly from the
division by zero viewpoint. The Descartes circle theorem is valid except for
one case for lines and points for the three circles and for one exception case,
we can obtain very interesting results, by the division by zero calculus.

We would like to consider all the cases for the Descartes theorem for lines
and point circles, step by step.

10.3.1 One line and two circles case

We consider the case in which the circle C3 is one of the external common
tangents of the circles C1 and C2. This is a typical case in this paper. We
assume r1 ≥ r2. We now have r3 = 0 in (10.4). Hence

1

r4
=

1

r1
+

1

r2
+

1

0
± 2

√
1

r1r2
+

1

r2 · 0
+

1

0 · r1
=

1

r1
+

1

r2
± 2

√
1

r1r2
.

This implies
1

√
r4

=
1

√
r1

+
1

√
r2
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in the plus sign case. The circle C4 is the incircle of the curvilinear triangle
made by C1, C2 and C3 (see Figure 1). In the minus sign case we have

1
√
r4

=
1

√
r2

− 1
√
r1
.

In this case C2 is the incircle of the curvilinear triangle made by the other
three (see Figure 2).

C1

C2

C4

C3

Figure 1.

C1

C4

C2

C3

Figure 2.

Of course, the result is known. The result was also well-known in Wasan
geometry [63] with the Decartes circle theorem itself.

10.3.2 Two lines and one circle case

In this case, the two lines have to be parallel, and so, this case is trivial,
because then other two circles are the same size circles, by the division by
zero 1/0 = 0.

10.3.3 One point circle and two circles case

This case is another typical case for the theorem. Intuitively, for r3 = 0, the
circle C3 is the common point of the circles C1 and C2. Then, there does not
exist any touching circle of the three circles Cj; j = 1, 2, 3.

For the point circle C3, we will consider it by limiting of circles attaching
to the circles C1 and C2 to the common point. Then, we will examine the
circles C4 and the Descartes theorem.

In Theorem 7, by setting z = 1/w, we will consider the case w = 0; that
is, the case z = ∞ in the classical sense; that is, the circle C3 is reduced to
the origin.
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We look for the circles C4 attaching with three circles Cj; j = 1, 2, 3. We
set

C4 : (x− x4)
2 + (y − y4)

2 = r24. (10.5)

Then, from the touching property we obtain:

x4 =
r1r2(r2 − r1)w

2

D
,

y4 =
2r1r2

(√
r1r2 + (r1 + r2)w

)
w

D

and

r4 =
r1r2(r1 + r2)w

2

D
,

where
D = r1r2 + 2

√
r1r2(r1 + r2)w + (r21 + r1r2 + r22)w

2.

By inserting these values to (10.5), we obtain

f0 + f1w + f2w
2 = 0,

where
f0 = r1r2(x

2 + y2),

f1 = 2
√
r1r2

(
(r1 + r2)(x

2 + y2)− 2r1r2y
)

and

f2 = (r21 + r1r2 + r22)(x
2 + y2) + 2r1r2(r2 − r1)x− 4(r1 + r2)y + 4r21r

2
2.

By using the division by zero calculus for w = 0, we obtain, for the first, for
w = 0, the second by setting w = 0 after dividing by w and for the third
case, by setting w = 0 after dividing by w2,

x2 + y2 = 0, (10.6)

(r1 + r2)(x
2 + y2)− 2r1r2y = 0 (10.7)

and

(r21+r1r2+r
2
2)(x

2+y2)+2r1r2(r2−r1)x−4r1r2(r1+r2)y+4r21r
2
2 = 0. (10.8)
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Note that (10.7) is the red circle in Figure 3 and its radius is

r1r2
r1 + r2

(10.9)

and (10.8) is the green circle in Figure 3 whose radius is

r1r2(r1 + r2)

r21 + r1r2 + r22
.

C1

C2

Figure 3.

When the circle C3 is reduced to the origin, of course, the inscribed circle
C4 is reduced to the origin, then the Descartes theorem is not valid. However,
by the division by zero calculus, then the origin of C4 is changed suddenly
for the cases (10.6), (10.7) and (10.8), and for the circle (10.7), the Descartes
theorem is valid for r3 = 0, surprisingly.

Indeed, in (9.4) we set ξ =
√
r3, then (10.4) is as follows:

1

r4
=

1

r1
+

1

r2
+

1

ξ2
± 2

1

ξ

√
ξ2

r1r2
+

(
1

r1
+

1

r2

)
.

and so, by the division by zero calculus at ξ = 0, we have

1

r4
=

1

r1
+

1

r2

which is (10.9). Note, in particular, that the division by zero calculus may
be applied in many ways and so, for the results obtained should be examined
some meanings. This circle (10.7) may be looked a circle touching the origin
and two circles C1 and C2, because by the division by zero calculus

tan
π

2
= 0,
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that is a popular property.
Meanwhile, the circle (10.8) is the attaching circle with the circles C1, C2

and the beautiful circle with center ((r2−r1), 0) with radius r1+r2. The each
of the areas surrounded by the three cicles C1, C2 and the circle of radius
r1 + r2 is called an arbelos, and the circle (10.7) is the famous Bankoff circle
of the arbelos.

For r3 = −(r1 + r2), from the Descartes identity (10.4), we have (10.4).
That is, when we consider that the circle C3 is changed to the circle with
center ((r2 − r1), 0) with radius r1 + r2, the Descartes identity holds. Here,
the minus sign shows that the circles C1 and C2 touch C3 internally from the
inside of C3.

10.3.4 Two point circles and one circle case

This case is trivial, because, the exterior touching circle is coincident with
one circle.

10.3.5 Three points case and three lines case

In these cases we have rj = 0, j = 1, 2, 3 and the formula (10.4) shows that
r4 = 0. This statement is trivial in the general sense.

As the solution of the simplest equation

ax = b, (10.10)

we have x = 0 for a = 0, b ̸= 0 as the standard value, or the Moore-Penrose
generalized inverse. This will mean in a sense, the solution does not exist;
to solve the equation (10.10) is impossible. The zero will represent some
impossibility.

In the Descartes theorem, three lines and three points cases, we can un-
derstand that the attaching circle does not exist, or it is the point and so the
Descartes theorem is valid.

10.4 Circles and a chord

We recall the following result of the old Japanese geometry [62, 57, 36] (see
Figure 4):
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C

C1 C2

h

Figure 4.

Lemma 10. Assume that the circle C with radius r is divided by a chord
t into two arcs and let h be the distance from the midpoint of one of the arcs
to t. If two externally touching circles C1 and C2 with radii r1 and r2 also
touch the chord t and the other arc of the circle C internally, then h, r, r1
and r2 are related by

1

r1
+

1

r2
+

2

h
= 2

√
2r

r1r2h
.

We are interesting in the limit case r1 = 0 or r2 = 0. In order to see the
backgound of the lemma, we will see its simple proof.

The centers of C1 and C2 can be on the opposite sides of the normal
dropped on t from the center of C or on the same side of this normal. From
the right triangles formed by the centers of C and Ci (i = 1, 2), the line
parallel to t through the center of C, and the normal dropped on t from the
center of Ci, we have

|
√

(r − r1)2 − (h+ r1 − r)2 ±
√
(r − r2)2 − (h+ r2 − r)2| = 2

√
r1r2,

where we used the fact that the segment length of the common external
tangent of C1 and C2 between the tangency points is equal to 2

√
r1r2. The

formula of the lemma follows from this equation.

10.4.1 Results

We introduce the coordinates in the following way: the bottom of the circle
C is the origin and tangential line at the origin of the circle C is the x axis
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and the y axis is given as in the center of the circle C is (0, r). We denote
the centers of the circles Cj; j = 1, 2 by (xj, yj), then we have

y1 = h+ r1, y2 = h+ r2.

Then, from the attaching conditions, we obtain the three equations:

(x2 − x1)
2 + (r1 − r2)

2 = (r1 + r2)
2,

x21 + (h− r + r1)
2 = (r − r1)

2

and
x22 + (h− r + r2)

2 = (r − r2)
2.

Solving the equations for x1, x2 and r2, we get four sets of the solutions. Let
h = 2r3, v = r − r1 − r3. Then two sets are:

x1 = ±2
√
r3v,

x2 = ±2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −

√
v)− (r1 + r3))

(r1 + r3)2
.

The other two sets are

x1 = ±2
√
r3v,

x2 = ∓2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +

√
v)− (r1 + r3))

(r1 + r3)2
.

We now consider the solution

x1 = 2
√
r3v,

x2 = 2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −

√
v)− (r1 + r3))

(r1 + r3)2
.

Then

(x− x2)
2 + (y − y2)

2 − r22 =
g0 + g1r1 + g2r

2
1 + g3

(r1 + r3)2
,
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where
g0 = r23(x

2 + y(y − 4r3) + 4rr3),

g1 = 2r3((x−
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

g2 = (x− 2
√
rr3)

2 + y2 − 2r3y,

and
g3 = 4r3

√
v(r1(

√
ry −

√
r3x)− r3

√
r3x).

We now consider another solution

x1 = 2
√
r3v,

x2 = −2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +

√
v)− (r1 + r3))

(r1 + r3)2
.

Then

(x− x2)
2 + (y − y2)

2 − r22 =
k0 + k1r1 + k2r

2
1 + k3

(r1 + r3)2
,

where
k0 = r23(x

2 + y(y − 4r3) + 4rr3),

k1 = 2r3((x+
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

k2 = (x+ 2
√
rr3)

2 + y2 − 2r3y,

and
k3 = −4r3

√
v(r1(

√
ry +

√
r3x) + r3

√
r3x).

We thus see that the circle C2 is represented by

(g0 + g3) + g1r1 + g2r
2
1 = 0

and
(k0 + k3) + k1r1 + k2r

2
1 = 0.

For the symmetry, we consider only the above case. We obtain the division
by zero calculus, first by setting r1 = 0, the next by setting r1 = 0 after
dividing by r1 and the last by setting r1 = 0 after dividing by r21,

g0 + g3 = 0,
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g1 = 0,

and
g2 = 0.

That is, (
x−

√
2rh− h2

)2
+ (y − h)2 = 0,(

x−
√
rh

2

)2

+

(
y −

(
r +

3h

4

))2

= r2 +
9

16
h2,

and (
x−

√
2rh
)2

+

(
y − h

2

)2

=

(
h

2

)2

.

The first equation represents one (
√
2rh− h2, h) of the points of inter-

section of the circle C and the chord t (see Figure 5). The second equation
expresses the red circle in the figure. The third equation expresses the circle
touching C externally, the x-axis and the extended chord t denoted by the
green circle in the figure. The last two circles are orthogonal to the circle
with center origin passing through the points of intersection of C and t.

C

t

Figure 5
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Now for the beautiful identity in the lemma, for r1 = 0, we have, by the
division by zero,

1

0
+

1

r2
+

2

h
= 2

√
2r

0 · r2h
and

r2 = −h
2
.

Here, the minus sigh will mean that the blue circle is attaching with the
circle C in the outside of the circle C; that is, we can consider that when
the circle C1 is reduced to the point (

√
2rh− h2, h), then the circle C2 is

suddenly changed to the blue circle and the beautiful identity is still valid.
Note, in particular, the brue circle is attaching with the circle C and the cord
t.

Meanwhile, for the curious red circle, we do not know its property, how-
ever, we know curiously that it is orthogonal with the circle with the center at
the origin and with radius

√
2rh passing through the points (±

√
2rh− h2, h).

This subsection is based on the paper [41].
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11 Introduction of formulas log 0 = log∞ = 0

For any fixed complex number a, we will consider the sector domain ∆a(α, β)
defined by

0 ≤ α < arg(z − a) < β < 2π

on the complex z plane and we consider the conformal mapping of ∆a(α, β)
into the complex W plane by the mapping

W = log(z − a). (11.1)

Then, the image domain is represented by

S(α, β) = {W ;α < ℑW < β}.

Two lines {W ;ℑW = α} and {W ;ℑW = β} usually were considered as
having the common point at infinity, however, in the division by zero, the
point is represented by zero.

Therefore, log 0 and log∞ should be defined as zero. Here, log∞
is precisely given in the sense of [log z]z=∞. However, the properties of the
logarithmic function should not be expected more, we should consider the
value only. For example,

log 0 = log(2 · 0) = log 2 + log 0

is not valid.
In particular, in many formulas in physics, in some expression, for some

constants A,B

log
A

B
,

if we consider the case that A or B is zero, then we should consider it in the
form

log
A

B
= logA− logB, (11.2)

and we should put zero in A or B. Then, in many formulas, we will be able
to consider the case that A or B is zero. For the case that A or B is zero, the
identity (11.1) is not valid, then the expression logA − logB may be valid
in many physical formulas. However, the results are case by case, and we
should check the obtained results for applying the formula (11.2)
for A = 0 or B = 0. Then, we will be able to enjoy the formula apart
from any logical problems as in the applications of the division by zero and
division by zero calculus..
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11.1 Applications of log 0 = 0

We can apply the result log 0 = 0 for many cases as in the following way.
For example, we will consider the differential equation

xy′ = xy2 − a2x log2k(βx) + ak logk−1(βx). (11.3)

For the solution y = a log2k(βx)([44], page 95, 5), we can consider the solu-
tion y = 0 as β = 0.

In the famous function (Leminiscate)

x = a log
a+

√
a2 − y2

y
−
√
a2 − y2, a > 0, (11.4)

we have

x = a log

[
a+

√
a2 − y2

y
exp

(
−1

a

√
a2 − y2

)]
. (11.5)

By the division by zero, at the point y = 0[
a+

√
a2 − y2

y
exp

(
−1

a

√
a2 − y2

)]
= 0. (11.6)

Thus the curve passes also the origin (0.0).
In the differential equation

x2y′′′ + 4x2y′′ − 2xy′ − 4y = log x, (11.7)

we have the general solution

y =
C1

x
+
C2

x2
+ C3x

2 − 1

4
log x+

1

4
, (11.8)

satisfying that at the origin x = 0

y(0) =
1

4
, y′(0) = 0, y′′(0) = 2C3, y

′′′(0) = 0. (11.9)

We can give the values C1 and C2. For the sake of the division by zero, we
can, in general, consider differential equations even at analytic and isolated
singular points.
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In the formula ([13], page 153), for 0 ≤ x, t ≤ π

∞∑
n=1

sinns sinnt

n
=

1

2
log | sin((s+ t)/2)/ sin((s− t)/2)|, (11.10)

for s = t = 0, π, we can interprete that

0 =
1

2
log

0

0
= log 0. (11.11)

In general, for s = t, we may consider that

∞∑
n=1

sin2 ns

n
=

1

2
log | sin((s+ s)/2)/0)| (11.12)

=
1

2
log | sinns/0| = 1

2
log 0 = 0.

Note that this result is not a contradiction. Recall the case of the function
y = 1/x at the origin:

lim
x→+0

1

x
= +∞, (11.13)

in the monotonically increasing way, however,[
1

x

]
x=0

= 0. (11.14)

Such a discontinuity property is important in the division by zero.
We will give a physical sense of log 0 = 0. We shall consider a uniform

line density µ on the z− axis, then the force field F and the potential ϕ are
given, for p = xi+ yj, p = |p|,

F = −2µ

p2
p (11.15)

and

ϕ = −2µ log
1

p
, (11.16)

respectively. On the z- axis, we have, of course,

F = 0, ϕ = 0. (11.17)
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11.2 Robin constant and Green’s functions

From the typical case, we will consider a fundamental application. Let
D(a,R) = {|z| > R} be the outer disc on the complex plane. Then, the Rie-
mann mapping function that maps conformally onto the unit disc {|W | < 1}
and the point at infinity to the origin is given by

W =
R

z − a
. (11.18)

Therefore, the Green function G(z,∞) of D(a,R) is given by

G(z,∞) = − log

{
R

|z − a|

}
. (11.19)

Therefore, from the representation

G(z,∞) = − logR + log |z|+ log

(
1− a

|z|

)
, (11.20)

we have the identity
G(∞,∞) = − logR, (11.21)

that is the Robin constant of D(a,R). This formula is valid in the general
situation, because the Robin constant is defined by

lim
z→b

{G(z, b) + log |z − b|}, (11.22)

for a general Green function with pole at b of some domain ([2]).

11.3 e0 = 1, 0

By the introduction of the value log 0 = 0, as the inversion function y = ex

of the logarithmic function, we will consider that y = e0 = 0. Indeed, we will
show that this definition is very natural.

We will consider the conformal mapping W = ez of the strip

S(−πi, πi) = {z;−π < ℑz < π}

onto the whole W plane cut by the negative real line (−∞, 0]. Of course, the
origin 0 corresponds to 1. Meanwhile, we see that the negative line (−∞, 0]
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corresponds to the negative real line (−∞, 0]. In particular, on the real line
limx→−∞ ex = 0. In our new space idea from the division by zero, the point
at infinity is represented by zero and therefore, we should define as

e0 = 0. (11.23)

For the fundamental exponential functionW = exp z, at the origin, we should
consider 2 valued function. The value 1 is the natural value as a regular
point of the analytic function, meanwhile the value 0 is given with a strong
discontinuity; however, this value will appear in the universe as a natural
way.

For the elementary functions y = xn, n = ±1,±2, · · ·, we have

y = en log x. (11.24)

Then, we wish to have

y(0) = en log 0 = e0 = 0. (11.25)

As a typical example, we will consider the simple differential equation

dx

x
− 2ydy

1 + y2
= 0. (11.26)

Then, by the usual method,

log |x| − log |1 + y2| = C; (11.27)

that is,

log

∣∣∣∣ x

1 + y2

∣∣∣∣ = log eC = logK,K = eC > 0 (11.28)

and
x

1 + y2
= ±K. (11.29)

However, the constant K may be taken zero, as we see directly log eC =
logK = 0.

In the differential equations

y′ = −λeλxy2 + aeµxy − ae(µ−λ)x (11.30)
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and
y′ = −beµxy2 + aλeλxy − a2be(µ+2λ)x (11.31)

we have solutions
y = −e−λx, (11.32)

y = aeλx, (11.33)

respectively. For λ = 0, as y = −1, y = a are solutions, respectively, however,
the functions y = 0, y = 0 are not solutions, respectively. However, many
and many cases, as the function y = e0·x = 0, we see that the function is
solutions of differential equations, when y = eλ·x is the solutions. See [44] for
many concrete examples.

Meanwhile, we will consider the Fourier integral∫ ∞

−∞
e−iωte−α|t|dt =

2α

α2 + ω2
. (11.34)

For the case α = 0, if this formula valid, then we have to consider e0 = 0.
Furthermore, by Poisson’s formula, we have

∞∑
n=−∞

e−α|n| =
∞∑

n=−∞

2α

α2 + (2πn)2
. (11.35)

If e0 = 0, then the above identity is still valid, however, for e0 = 1, the
identity is not valid. We have many examples.

For the integral ∫ ∞

0

x3 sin(ax)

x4 + 4
dx =

π

2
e−a cos a, (11.36)

the formula is valid for a = 0.
For the integral∫ ∞

0

ξ sin(xξ)

1 + a2ξ
dξ =

π

2a2
e−(x/a), x > 0, (11.37)

the formula is valid for x = 0.
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11.4 00 = 1, 0

By the standard definition, we will consider

00 = exp(0 log 0) = exp 0 = 1, 0. (11.38)

The value 1 is famous which was derived by N. Abel, meanwhile, H. Michi-
waki had directly derived it as 0 from the result of the division by zero.
However, we now know that 00 = 1, 0 is the natural result.

We will see its reality.

For 00 = 1:

In general, for z ̸= 0, from z0 = e0 log z, z0 = 1, and so, we will consider
that 00 = 1 in a natural way.

For example, in the elementary expansion

(1 + z)n =
n∑

k=0

nCkz
k (11.39)

the formula 00 = 1 will be convenient for k = 0 and z = 0.
In the fundamental definition

exp z =
∞∑
k=0

1

k!
zk (11.40)

in order to have a sense of the expansion at z = 0 and k = 0, we have to
accept the formula 00 = 1.

In the differential formula

dn

dxn
xn = nxn−1, (11.41)

in the case n = 1 and x = 0, the formula 00 = 1 is convenient and natural.
In the Laurent expansion (5.5), if 00 = 1, it may be written simply as

f(z) =
∞∑

n=−∞

Cn(z − a)n,

for f(a) = C0.

For 00 = 0:

For any positive integer n, since zn = 0 for z = 0, we wish to consider
that 00 = 0 for n = 0.
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11.5 cos 0 = 1, 0

Since

cos θ =
eiθ + e−iθ

2
, (11.42)

we wish to consider also the value cos 0 = 0.
The values e0 = 0 and cos 0 = 0 may be considered that the values at

the point at infinity are reflected to the origin and other many functions will
have the same property.

The short version of this section was given by [26] in the Proceedings of the
International Conference: https://sites.google.com/site/sandrapinelas/icddea-
2017

11.6 Finite parts of Hadamard in singular integrals

Singular integral equations are presently encountered in a wide range of
mathematical models, for instance in acoustics, fluid dynamics, elasticity
and fracture mechanics. Together with these models, a variety of methods
and applications for these integral equations has been developed. See, for
example, [11, 18, 30, 32].

For the numerical calculation of this finite part, see [37], and there, they
gave an effective numerical formulas by using the DE formula. See also its
references for various methods.

For singular integrals, we will consider their integrals as divergence, how-
ever, the Haramard finite part or Cauhy’s principal values give finite values;
that is, from divergence values we will consider finite values; for this interest-
ing property, we will be able to give a natural interpretation by the division
by zero calculus.

What are singular integrals? For the interrelationship between divergence
integrals and finite values in singular integrals, we can obtain an essential
answer by means of the division by zero calculus.

Let F (x) be an integrable function on an interval (c, d). The functions
F (x)/(x − a)n(n = 1, 2, 3..., c < a < d) are, in general, not integrable on
(c, d). However, for any ϵ > 0, of course, the functions(∫ a−ϵ

c

+

∫ d

a+ϵ

)
F (x)

(x− a)n
dx (11.43)
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are integrable. For an integrable function φ(x) on (a, d), we assume the
Taylor expansion

F (x) =
n−1∑
k=0

F (k)(a)

k!
(x− a)k + φ(x)(x− a)n. (11.44)

Then, we have ∫ d

a+ϵ

F (x)

(x− a)n
dx

=
n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1

ϵn−k−1
− F (n−1)(a)

(n− 1)!
log ϵ

+

{
−

n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1

(d− a)n−k−1
+
F (n−1)(a)

(n− 1)!
log(d− a) +

∫ d

a+ϵ

φ(x)dx

}
.

Then, the last term {....} is the finite part of Hadamard of the integral∫ d

a

F (x)

(x− a)n
dx (11.45)

and is written by

f. p.

∫ d

a

F (x)

(x− a)n
dx; (11.46)

that is, precisely

f. p.

∫ d

a

F (x)

(x− a)n
dx

:= lim
ϵ→+0

{∫ d

a+ϵ

F (x)

(x− a)n
dx−

n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1

ϵn−k−1
+
F (n−1)(a)

(n− 1)!
log ϵ

}
.

(11.47)

We do not take the limiting ϵ → +0, but we put ϵ = 0, in (11.47), then
we obtain, by the division by zero calculus:

f. p.

∫ d

a

F (x)

(x− a)n
dx =

∫ d

a

F (x)

(x− a)n
dx. (11.48)

The division by zero will give the natural meaning (definition) for the above
two integrals.
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Of course,

f. p.

∫ d

c

F (x)

(x− a)n
dx := f. p.

∫ a

c

F (x)

(x− a)n
dx+ f. p.

∫ d

a

F (x)

(x− a)n
dx. (11.49)

When n = 1, the integral is the Cauchy principal value.
In particular, for the expression (11.47), we have, missing log ϵ term, for

n ≥ 2

f. p.

∫ d

c

F (x)

(x− a)n
dx

= lim
ϵ→+0

{(∫ a−ϵ

c

+

∫ d

a+ϵ

)
F (x)

(x− a)n
dx−

n−2∑
k=0

F (k)(a)

k!(n− k − 1)

1 + (−1)n−k

ϵn−k−1

}
.

(11.50)

The content of this section was given in the paper [26].
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12 Basic meanings of values at isolated sin-

gular points of analytic functions

The values of analytic functions with isolated singular points were given by
the coefficients C0 of the Laurent expansions (the first coefficients of the reg-
ular parts) as the division by zero calculus. Therefore, their characteristic
property may be considered as arbitrary ones by any sift of the image com-
plex plane. Therefore, we can consider the values as zero in any Laurent
expansions by shifts, as normalizations. However, if by another normaliza-
tions, the Laurent expansions are determind, then the values will have their
senses. We will firstly examine such properties for the Riemann mapping
function.

Let D be a simply-connected domain containing the point at infinity
having at least two boundary points. Then, by the celebrated theorem of
Riemann, there exists a uniquely determined conformal mapping with a series
expansion

W = f(z) = C1z + C0 +
C−1

z
+
C−2

z2
+ . . . , C1 > 0, (12.1)

at the point at infinity which maps the domain D onto the exterior |w| > 1
of the unit disc in the complex W plane. We can normalize (12.1) as follows:

f(z)

C1

= z +
C0

C1

+
C−1

C1z
+
C−2

C1z2
+ . . . . (12.2)

Then, this function f(z)
C1

maps D onto the exterior of a circle of radius 1/C1

and so, it is called the mapping radius of D. See [5, 61]. Meanwhile, from
the normalization

f(z)− C0 = C1z +
C−1

z
+
C−2

z2
+ . . . , (12.3)

by the natural shift C0 of the image plane, the unit circle is mapped to the
unit circle with center C0. Therefore, C0 may be called as mapping center
ofD. The function f(z) takes the value C0 at the point at infinity in the sense
of the division by zero and now we have its natural sense by the mapping
center of D. We have considered the value of the function f(z) as infinity at
the point at infinity, however, practically it was the value C0. This will mean
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that in a sense the value C0 is the most far point from the point at infinity
or the image domain with the strong discontinuity.

The properties of mapping radius were investigated deeply in conformal
mapping theory like estimations, extremal properties and meanings of the
values, however, it seems that there is no information on the property of
mapping center. See many books on conformal mapping theory or analytic
function theory. See [61] for example.

From the fundamental Bierberbach area theorem, we can obtain the in-
equality:

For analytic functions on |z| > 1 with the normalized expansion around
the point at infinity

g(z) = z + b0 +
b1
z
+ · · ·

that are univalent and take no zero point,

|b0| ≤ 2.

In our sense
g(∞) = b0.

See [33], Chapter V, Section 8 for the details.

12.1 Values of typical Laurent expansions

The values at singular points of analytic functions are represented by the in-
tegrals, and so for given functions, the calculations will be simple numerically,
however, their analytical (precise) values will be given by using the known
Taylor or Laurent expansions. In order to obtain some feelings for the val-
ues at singular points of analytic functions, we will see typical examples and
fundamental properties.

For

f(z) =
1

cos z − 1
, f(0) = −1

6
. (12.4)

For

f(z) =
log(1 + z)

z2
, f(0) =

−1

2
. (12.5)

For

f(z) =
1

z(z + 1)
, f(0) = −1. (12.6)
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For our purpose in the division by zero calculus, when a is an isolated
singular point, we have to consider the Laurent expansion on {0 < r <
|z − a| < R} such that r may be taken arbitrary small r, because we are
considering the function at a.

For

f(z) =
1

z2 + 1
=

1

(z + i)(z − i)
, f(i) =

1

4
. (12.7)

For

f(z) =
1√

(z + 1)− 1
, f(0) =

1

2
. (12.8)

For the Bernoulli constants Bn, we have the expansion

1

(exp z)− 1
=

1

z
− 1

2
+

∞∑
n=1

(−1)n−1Bn

(2n)1
z2n−1,

and so, we obtain
1

(exp z)− 1
(z = 0) = −1

2
.

From the well-known expansion ([1], page 807) of the Riemann zeta func-
tion

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2(s− 1)2 + ..., (12.9)

we see that the Euler constant γ is the value at s = 1:

ζ(1) = γ. (12.10)

From the representation of the Gamma function Γ(z)

Γ(z) =

∫ ∞

1

e−ttz−1dt+
∞∑
n=0

(−1)n

n!(z + n)
(12.11)

([45], page 472), we have

Γ(−m) = Em+1(1) +
∞∑

n=0,n̸=m

(−1)n

n!(−m+ n)

and

[Γ(z) · (z + n)](−n) = (−1)n

n!
.
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In particular, we obtain
Γ(0) = −γ,

by using the identity

E1(z) = −γ − log z −
∞∑
n=1

(−1)nzn

nn!
, | arg z| < π

([1], 229 p. (5.1.11)). Of course,

E1(z) =

∫ ∞

z

e−tt−1dt.

From the recurrence formula of the Psi (Digamma ) function

ψ(z + 1) = ψ(z) +
1

z

([1], 258), we have, for z = 0,

ψ(0) = ψ(1) =
Γ′(z)

Γ(z)
= −γ

for z = 0, 1. Note that

ψ(1 + z) = −γ +
∞∑
n=2

(−1)nζ(n)zn−1, |z| < 1

= −γ +
∞∑
n=

z

n(n+ z)
, z ̸= −1,−2, ...

([1], 259).
We can consider many special functions and the values at singular points.

For example,

Y3/2(z) = J−3/2(z) = −
√

2

πz

(
sin z +

cos z

z

)
,

I1/2(z) =

√
2

πz
sinh z,

K1/2(z) = K−1/2(z) =

√
π

2z
e−z,
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and so on. They take the value zero at the origin, however, we can consider
some meanings of the value.

Of course, the product property is, in general, not valid:

f(0) · g(0) ̸= (f(z)g(z))(0); (12.12)

indeed, for the functions f(z) = z + 1/z and g(z) = 1/z + 1/(z2)

f(0) = 0, g(0) = 0, (f(z)g(z))(0) = 1. (12.13)

For an analytic function f(z) with a zero point a, for the inversion func-
tion

(f(z))−1 :=
1

f(z)
,

we can calculate the value (f(a))−1 at the singular point a.
For example, note that: for the function

f(z) = z − 1

z
,

f(0) = 0, f(1) = 0 and f(−1) = 0. Then, we have

(f(z))−1 =
1

2(z + 1)
+

1

2(z − 1)
.

Hence,

((f(z))−1)(z = 0) = 0, ((f(z))−1)(z = 1) =
1

4
, ((f(z))−1(z = −1) = −1

4
.

Here, note that the point z = 0 is not a regular point of the function f(z).
We, meanwhile, obtain that(

1

log x

)
x=1

= 0. (12.14)

Indeed, we consider the function y = exp(1/x), x ∈ R and its inverse
function y = 1

log x
. By the symmetric of the two functions with respect to the

function y = x, we have the desired result.
Here, note that for the function 1

log x
, we can not use the Laurent expansion

around x = 1, and therefore, the result is not trivial.
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We shall refer to the trigonometric functions. See, for example, ([12],
page 75) for the expansions.

From the expansion

1

sin z
=

1

z
+

+∞∑
ν=−∞,ν ̸=0

(−1)ν
(

1

z − νπ
+

1

νπ

)
, (12.15)

(
1

sin z

)
(0) = 0.

Meanwhile, from the expansion

1

sin2 z
=

∞∑
ν=−∞

1

(z − νπ)2
, (12.16)

(
1

sin2 z

)
(0) =

2

π2

∞∑
ν=1

1

ν2
=

1

3
.

From the expansion

1

cos z
= 1 +

+∞∑
ν=−∞

(−1)ν
(

1

z − (2ν − 1)π/2
+

2

(2ν − 1)π

)
, (12.17)

(
1

cos z

)(π
2

)
= 1− 4

π

∞∑
ν=0

(−1)ν

2ν + 1
= 0.

Meanwhile, from the expansion

1

cos2 z
=

+∞∑
ν=−∞

1

(z − (2ν − 1)π/2)2
, (12.18)

(
1

cos2 z

)(π
2

)
=

2

π2

∞∑
ν=1

1

ν2
=

1

3
.
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12.2 Values of domain functions

In this section, we will examine the values of typical domain functions at the
singular points. For a basic reference, see [33].

1). For the mapping

W =
z

1− z
(12.19)

that maps conformally the unit disc |z| < 1 onto the half-plane {ReW > 1
2
},

we have
W (1) = −1. (12.20)

2). For the Koebe function

W =
z

(1− z)2
(12.21)

that maps conformally the unit disc |z| < 1 onto the cut plane of (−∞,−1
4
)

we have
W (1) = 0. (12.22)

We can understand it as follows: the boundary point z = 1 of the unit disc is
mapped to the infinity point, however, the point is connected to the origin.
We can see the similar property, for many cases.

3). For the Joukowsky transform

W =
1

2

(
1

z
+ z

)
(12.23)

that maps conformally the unit disc |z| < 1 onto the cut plane of [−1, 1] we
have

W (0) = 0. (12.24)

This correspondence will be curious in a sense. The interior point the origin
corresponds to the boundary point of the origin. Should we consider the
inverse of the case 2)? - the image may be connected to the origin.

4). For the transform

W =
z

1− z2
(12.25)
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that maps conformally the unit disc |z| < 1 onto the cut plane of the imagi-
nary axis of [+∞, i/2] and [−∞,−i/2] we have

W (1) = −1

4
, W (−1) =

1

4
, (12.26)

by the method of Laurent expansion method, curiously. Should we consider
the values at z = 1 and z = −1 as 0 from 1/0 and −1/0 by the insertings
z = 1 and z = −1 in the numerator and denominator?

5). For the conformal mapping W = P (z; 0, v), |v| < 1 of the unit disc
onto the circular slit W plane that is normalized by P (0; 0, v) = 0 and

P (z : 0, v) =
1

z − v
+ C0 + C0(z − v) + ..., (12.27)

is given by, explicitly

P (z; 0, v) =
1

v(1− |v|2)
z(1− vz)

z − v
(12.28)

([33], 340 page). Then, we obtain

P (z : 0, v)|z=v = C0 =
1− 2|v|2

v(1− |v|2)
, (12.29)

at z = v by the Laurent expansion method. By the constant C0, we can
interpret as in the mapping center by shift of the image plane. We may also
give the value for z = v by

P (z : 0, v)|z=v =

[
1

v(1− |v|2)
z(1− vz)

z − v

]
z=v

=
v(1− |v|2)

0
= 0. (12.30)

The circumstance is similar for the corresponding canonical conformal map-
ping Q(z : 0, v) for the radial slit mapping.

12.3 Mysterious properties at the point at infinity

In this subsection, we will refer to some feelings on the point at infinity,
because, the division by zero creates a new world on the point at infinity.
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12.3.1 Many points at infinity?

When we consider a circle with center P , by the inversion with respect to
the circle, the points of a neighborhood at the point P are mapped to a
neighborhood around the point at infinity except the point P . This property
is independent of the radius of the circle. It looks that the point at infinity
is depending on the center P . This will mean that there exist many points
at infinity, in a sense.

12.3.2 Stereographic projection

The point at infinity may be realized by the stereographic projection as well
known. However, the projection is dependent on the position of the sphere
(the plane coordinates). Does this mean that there exist many points at
infinity?

12.3.3 Laurent expansion

From the definition of the division by zero calculus, we see that if there exists
a negative n term in (5.5)

lim
z→a

f(z) = ∞,

however, we have (5.6). The values at the point a have many values, that
are all complex numbers. At least, in this sense, we see that we have many
points at the point of infinity.

In the sequel, we will show typical points at infinity.

12.3.4 Diocles’ curve of Carystus (BC 240? - BC 180?)

The beautiful curve

y2 =
x3

2a− x
, a > 0

is considered by Diocles. By setting X =
√
2a− x we have

y = ± x(3/2)√
2a− x

= ±(2a−X2)(3/2)

X
.

Then, by the division by zero calculus at X = 0, we have a reasonable value
0.
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Meanwhile, for the function x3

2a−x
, we have −12a2, by the division by zero

calculus at x = 2a. This leads to a wrong value.

12.3.5 Nicomedes’ curve (BC 280 - BC 210)

The very interesting curve

r = a+
b

cos θ

is considered by Nicomedes from the viewpoint of the 1/3 division of an angle.
That has very interesting geometrical meanings. For the case θ = ±(π/2),
we have r = a, by the division by zero calculus.

Of course, the function is symmetric for θ = 0, however, we have a myste-
rious value r = a, for θ = ±(π/2). Look the beautiful graph of the function.

12.3.6 Newton’s curve (1642 - 1727)

Meanwhile, for the famous Newton curve

y = ax2 + bx+ c+
d

x
(a, d ̸= 0),

of course, we have y(0) = c.
Meanwhile, in the division by zero calculus, the value is determined by

the information around any analytical point for an analytic function, as we
see from the basic property of analytic functions.

At this moment, the properties of the values of analytic functions at
isolated singular points are mysterious, in particular, in the geometrical sense.

12.3.7 Unbounded, however, bounded

We will consider the high

y = tan θ, 0 ≤ θ ≤ π

2

on the line x = 1. Then, the high y is unbounded, however, the high line
(gradient) can not be extended beyond the y axis. The restriction is given
by 0 = tan(π/2).

Recall the stereographic projection of the complex plane. The points on
the plane can be expanded in an unbounded way, however, all the points
on the complex plane have to be corresponded to the points of the Riemann
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sphere. The restriction is the point at infinity which corresponds to the north
pole of the Riemann sphere and the point at infinity is represented by 0.

This subsection is presented in [55].
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13 Division by zero calculus on mutidimen-

sional spaces

In order to make clear the problem, we give firstly a prototype example. We
have the identity by the division by zero calculus: For

f(z) =
1 + z

1− z
, f(1) = −1. (13.1)

From the real part and imaginary part of the function, we have, for z = x+iy

1− x2 − y2

(1− x)2 + y2
= −1, at (1, 0) (13.2)

and
y

(1− x)2 + y2
= 0, at (1, 0), (13.3)

respectively. Why the differences do happen?
In order to solve this problem, we will give the definition of the division

by zero calculus on multidimensional spaces:

Definition of the division by zero calculus for multidimensional
spaces. For an analytic function g(z) on a domain D on Cn, n ≥ 1, we set

E = {z ∈ D; g(z) = 0}.

For an analytic function f(z) on the set D \ E such that

f(z) =
∞∑

n=−∞

Cn(z)g(z)
n, (13.4)

for analytic functions Cn(z) on D, we define the division by zero calculus by
the correspondence:

f −→ Ff,g=0(z) := C0(z)

that shows a natural analytic function of the function f on the domain D
derived from D \ E with respect to E = {z ∈ D; g(z) = 0}.

Of course, this definition is a natural extension of the one dimensional
case. The expression (13.4) may be ensured by the general Laurent expansion
that was introduced by Takeo Ohsawa:
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Proposition 2. In the Definition of the division by zero calculus for
mutidimensional spaces, if the domain D is a regular domain, for any analytic
function g, the expansion is possible.

See [60] for the related topics.
However, since the uniqueness of the expansion is, in general, not valid,

the division by zero calculus is not determined uniquely. However, we are
very interested in the expansion (13.4) and the property of the function C0(z)
as in the one dimensional case.

From the above arguments, we can see the desired results for the examples
as follows:

1− x2 − y2

(1− x)2 + y2
(13.5)

= −1 +
2(1− x)

(1− x)2 + y2
= −1, at (1, 0)

and
y

(1− x)2 + y2
= 0, at (1, 0). (13.6)
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14 Division by zero calculus in physics

We will see the division by zero properties in various physical formulas. We
found many and many division by zero in physics and others, however, we
expect many publications by the related specialists. At the first stage, here
we refer only to elementary formulas, as examples.

14.1 In balance of a steelyard

We will consider the balance of a steelyard and then we have the equation

aFa = bFb (14.1)

as the moment equality, here, a, b are the distances from the fixed point and
Fa, Fb are forces at the points a, b, respectively. Then, we have

Fa =
b

a
Fb. (14.2)

For a = 0, should be considered as Fa = 0 by the division by zero b/0 = 0?
The identity (14.1) appears in many situations, and the above result may

be valid similarly.

14.2 By rotation

We will give a simple physical model showing the result 0
0
= 0. We shall

consider a disc with x2 + y2 ≤ a2 rowling uniformly with a positive constant
angle velocity ω with the center at the origin. Then we see, at the only
origin, ω = 0 and at other all the points, ω is a constant. Then, we see, the
velocity and the radius r are zero at the origin. This will mean that, in the
general formula

v = rω,

or, in

ω =
v

r

at the origin,
0

0
= 0.

We will not be able to obtain the result from
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lim
r→+0

ω = lim
r→+0

v

r
,

because it is the constant.
For a uniform rotation with velocity v with a center O′ with a radius

r. For the angular velocity vector ω and for the moving poisition P on the
circle, we set r = OP . Then,

v = ω × r. (14.3)

If ω × r = 0, then, of course, v = 0.

14.3 By the Newton’s law

We will recall the fundamental law by Newton:

F = G
m1m2

r2
(14.4)

for two masses m1,m2 with a distance r and a constant G. Of course,

lim
r→+0

F = ∞, (14.5)

however, as in our fraction

F = 0 = G
m1m2

0
. (14.6)

Of course, here, we can consider the above interpretation for the math-
ematical formula (14.4) as the new interpretation (14.6). In the ideal case,
when the two masses are on the one point, the force F will not be positive,
it will be reduced to zero.

In the Kepler (1571 - 1630) - Newton (1642 - 1727) law for central force
movement of the planet,

m
d2r

dt2
= −GmM

r3
r,

of course, we have r = 0 for r = 0.
For the Coulomb’s law, see similar formulas.
Indeed, in the formula

F = k
(+q)(−q)

r2
(14.7)
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for r = 0, we have F = 0.
In general, in the formula

F = k
(Q1)(Q2)

r2
(14.8)

for r = 0, we have F = 0? (S. Senuma: 2016.8.20.).
Furthermore, as well-known, the bright at a point at the distance r from

the origin is given by the formula

B = k
P

r2
, (14.9)

where k is a constant and P is the amount of the light. Of course, we have,
at the infinity:

B = 0. (14.10)

Then, meanwhile, may we consider as

B = 0 (14.11)

at the origin r = 0? Then we can obtain our formula

k
P

0
= 0,

as in our new formula.

14.4 An interpretation of 0× 0 = 100 from 100/0 = 0

The expression 100/0 = 0 will represent some divisor by the zero in a
sense, not the usual one, and so, we will be able to consider some product
sense 0× 0 = 100.

We will show such interpretation.
We shall consider same two masses m, however, their constant velosities

v for the origin are the same on the real line, in the symmetry way: We
consider the mooving energy product E2,

1

2
mv2 × 1

2
m(−v)2 = E2. (14.12)
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We shall consider at the origin and we assume the two masses stop at the
origin (possible in some case). Then, we can consider, formally

0× 0 = E2. (14.13)

The mooving energies turn to other energies, however, we can obtain some
interpretation as in the above.

14.5 Capillary pressure in a narrow capillary tube

In a narrow capillary tube saturated with fluid such as water, the capillary
pressure is simply expressed as follows,

Pc =
2σ

r
(14.14)

where Pc is capillary pressure (suction pressure), σ is surface tension, and r
is radius. If r is zero, there is no pressure. However Pc shows infinity, in the
common meaning.

This simple equation is based on the Laplace-Young equation

P = σ

(
1

R1

+
1

R2

)
(14.15)

where R1 and R2 are two principal radii of curvature at any point on the
surface of a droplet or a bubble and in the case spherical form R1 = R2 = R.
For a spherical bubble the pressure difference across the bubble film is zero
as the pressure is the same on both sides of the film. The Laplace-Young
equation reduces to

1

R1

+
1

R2

= 0. (14.16)

On other hand when diameter of a bubble is decreased and becomes 0(R = 0),
the bubbles collapse, enormous energy is generated. Accumulated free energy
in the bubble is released instantaneously.

14.6 Circles and curvature - an interpretation of the
division by zero r/0 = 0

We consider a solid body called right circular cone whose bottom is a disc
with radius r2. We cut the body with a disc of radius r1(0 < r1 < r2) that is
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parallel to the bottom disc. We denote the distance by d between the both
discs and R the distance between the top point of the cone and the bottom
circle on the surface of the cone. Then, R is calculated by Eko Michiwachi
(8 years old daughter of Mr. H. Michiwaki ) as follows:

R =
r2

r2 − r1

√
d2 + (r2 − r1)2,

that is called EM radius, because by the rotation of the cone on the plane, the
bottom circle writes the circle of radius R. We denote by K = K(R) = 1/R
the curvature of the circle with radius R. We fix the distance d. Now note
that:

r1 → r2 =⇒ R → ∞.

This will be natural in the sense that when r1 = r2, the circle with radius R
becomes a line.

However, the division by zero will mean that when r1 = r2, the above
EM radius formula makes sense and R = 0. What does it mean? Here, note
that, however, then the curvature K = K(0) = 0 by the division by zero;
that is, the circle with radius R becomes a line, similarly. The curvature of
a point (circle of radius zero) is zero.

14.7 Vibration

In the typical ordinary differential equation

m
d2x

dt2
= −kx, (14.17)

we have a general solution

x = C1 cos(ωt+ C2), ω =

√
k

m
. (14.18)

If k = 0, that is, if ω = 0, then the period T is given by

T =
2π

ω
.

Then, should be understood as T = 0, no period?
In the typical ordinary differential equation

m
d2x

dt2
+ kx = f cosωt, (14.19)
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we have a special solution

x =
f

m

1

|ω2 − ω2
0|
cosωt, ω0 =

√
k

m
. (14.20)

Then, how will be the case
ω = ω0 (14.21)

?
For example, for the differential equation

y′′ + a2y = b cosλx, (14.22)

we have a special solution, with the condition λ ̸= a

y =
b

a2 − λ2
cosλx. (14.23)

Then, when λ = a, by the division by zero calculus, we obtain the special
solution

y =
bx sin(ax)

2a
+
b cos ax

4a2
. (14.24)

14.8 Spring or circut

We will consider a spring with two spring constants {kj} in a line. Then, the
spring constant k of the spring is given by the formula

1

k
=

1

k1
+

1

k2
, (14.25)

by Hooke’s law. We know, in particular, if k1 = 0, then

1

k
=

1

0
+

1

k2
, (14.26)

and by the division by zero,
k = k2, (14.27)

that is very reasonable. In particular, by Hooke’s law, we see that

0

0
= 0. (14.28)

The corresponding result for the case of Ohmu’s law is similar and valid.
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14.9 Motion

A and B start at the origin on the real positive axis with, for t = 0

d2x

dt2
= a,

dx

dt
= u

and
d2x

dt2
= b,

dx

dt
= v,

respectively. After the time T and at the distance X from the origin, if they
meet, then we obtain the relations

T =
2(u− v)

b− a

and

X =
2(u− v)(ub− va)

(b− a)2
.

For the case a = b, we obtain the reasonable solutions T = 0 and X = 0.
We will consider the motion (x, y) represented by x = cos θ, y = sin θ

from (1, 0) to (−1, 0) (0 ≤ θ ≤ π) with the condition

vx =
dx

dt
= − sin θ

dθ

dt
= V (constant). (14.29)

Then, we have:

vy =
dy

dt
= −V 1

tan θ
, (14.30)

and

ay =
d2y

dt2
= −V 2 1

sin3 θ
. (14.31)

Then we see that:

vy(1, 0) = 0, that is,
1

tan 0
= 0, (14.32)

vy(−1, 0) = 0, that is,
1

tanπ
= 0, (14.33)

ay(1, 0) = 0, that is,
1

sin3 0
= 0, (14.34)

and

ay(−1, 0) = 0, that is,
1

sin3 π
= 0. (14.35)
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Here, we interpretated, by the physical reason, that

1

sin3 θ
=

1

sin θ
· 1

sin θ
· 1

sin θ
. (14.36)

If we consider [
1

sin3 θ

]
, (14.37)

by means of the Laurent expansion, then we have another value. For example,

1

sin2 z
=

∞∑
ν=−∞

1

(z − νπ)2
, (14.38)

(
1

sin2 z

)
(0) =

2

π2

∞∑
ν=1

1

ν2
=

1

3
.

We can find many and many the division by zero and division by zero
calculus in physics.
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15 Interesting examples in the division by

zero

We will give interesting examples in the division by zero. Indeed, the divi-
sion by zero may be looked in the elementary mathematics and also in the
universe.

• For the line
x

a
+
y

b
= 1, (15.1)

if a = 0, then by the division by zero, we have the line y = b. This is a
very interesting property creating new phenomena at the term x/a for
a = 0.

Note that here we can not consider the case a = b = 0.

• For the area S(a, b) = ab of the rectangle with sides of lengths a, b, we
have

a =
S(a, b)

b
(15.2)

and for b = 0, formally

a =
0

0
. (15.3)

However, there exists a contradiction. S(a, b) depends on b and by the
division by zero calculus, we have, for the case b = 0, the right result

S(a, b)

b
= a. (15.4)

• For the identity

(a2 + b2)(a2 − b2) = c2(a2 − b2); a, b, c > 0 (15.5)

if a ̸= b, then we have the Pythagorean theorem

a2 + b2 = c2. (15.6)

However, for the case a = b, we have also the Pythagorean theorem,
by the division by zero calculus

2a2 = c2. (15.7)
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• Let αj; j = 1, ..., n be the solutions of the equation

f(x) = anx
n + an−1x

n−1 + ...a0 = 0, an ̸= 0, (15.8)

then, 1
αj
; j = 1, ..., n are the solution of the equation

f

(
1

x

)
= 0, (15.9)

when we apply the division by zero.

• In a Hilbert space H, for a fixed member v and for a given number d
we set

V = {y ∈ H; (y, v) = d} (15.10)

and for fixed x ∈ H

d(x, V ) :=
|(x, v)− d|

∥v∥
. (15.11)

If v = 0, then, (y, v) = 0 and d have to zero. Then, since H = V , we
have

0 =
0

0
. (15.12)

• For the equation
a× x = b

the solutions exist if and only if a · b = 0 and then, we have

x =
b · a
a · a

.

For a = 0, we have x = 0 by the division by zero.

• We consider 4 lines

a1x+ b1y + c1 = 0,

a1x+ b1y + c′1 = 0,

a2x+ b2y + c2 = 0,

a2x+ b2y + c′2 = 0,

(15.13)
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Then, the area S surrounded by these lines is given by the formula

S =
|c1 − c′1| · |c1 − c′1|

|a1b2 − a2b1|
. (15.14)

Of course, if |a1b2 − a2b1| = 0, then S = 0.

• 1
sin 0

= 1
cosπ/2

= 0. Consider the linear equation with a fixed positive

constant a
x

a cos θ
+

y

a sin θ
= 1. (15.15)

Then, the results are clear from the graphic meanings.

• For the tangential line at a point (a cos θ, sin θ) on the elliptic curve

x2

a2
+
y2

b2
= 1, a, b > 0 (15.16)

we have Q(a/(cos θ), 0) and R(0, b/(sin θ)) as the common points with
x and y axisis, respectively. if θ = 0, then Q(a, 0) and R(0, 0). If
θ = π/2, then Q(0, 0) and R(0, b).

• For the tangential line at the point (a cos θ, sin θ) on the elliptic curve,
we shall consider the area S(θ) of the triangle formed by this line and
x, y axises

S(θ) =
ab

| sin θ|
.

Then, by the division by zero calculus, we have S(0) = 0.

• The common point of B (resp. B′) of a tangential line (15.16) and the
line x = a (resp. x = −a) is given by

B

(
a,
b(1− cos θ)

sin θ

)
.

(resp.

B′
(
−a, b(1 + cos θ)

sin θ

)
.

) The circle with diameter BB′ is given by

x2 + y2 − 2b

sin θ
y − (a2 − b2) = 0.
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Note that this circle passes two forcus points of the elliptic curve. Note
that for θ = 0, we have the reasonable result, by the division by zero
calculus

x2 + y2 − (a2 − b2) = 0.

In the classical theory for quadratic curves, we have to arrange globally
it by the division by zero calculus.

• On the real line, we look at the point P with angle α and β with a
distance l. Then, the high of the point P is given by

h =
l sinα sin β

sin(α− β)
.

Then, if α = β, then, by the division by zero, h = 0.

• We consider two tangential lines from a point A for a circle C and
another line with two common points P and Q with C in the way A-
P-Q. Let B be the common point with the line and the two tangential
points in the way A-P-B-Q. Then, we know the identity

AP

PB
=
AQ

QB

or
2

AB
=

1

AP
+

1

AQ
.

These identities are valid even if P=B=Q with

AP

0
=
AQ

0
= 0.

• On the complex plane, the points {zj; j = 1, 2, 3, 4} on a circle if and
only if

2

z1 − z2
=

1

z1 − z2
+

1

z1 − z4
.

If z1 = z2, then we have, by the division by zero

z1 =
z1 + z2

2
.
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For 4 points {zj; j = 1, 2, 3, 4} on the complex plane, let θ be the angle
on the lines z1z2 and z3z4. Then, we have

cos θ =
1

2

(z2 − z1)(z4 − z3) + (z2 − z1)(z4 − z3)

|z2 − z1||z4 − z3|
.

If z1 = z2, then we have, by the division by zero, θ = π/2. Here, we
understand, by the division by zero, for the function

f(z) =
z

|z|
,

f(0) =
0

|0|
=

0

0
= 0,

as in the sigh function.

• We fix the lines y = d and x = L. We consider a line through two
point (0, t); t > d and (L, d), and let D be the common point the x
axis. Then, we have the identity

D

L
=

t

a− d
.

When, for t = d, by the division by zero, from d/0 = 0 we have D = 0
which is reasonable in our new mathematics. However, for the identity

t

a− d
. = 1 +

d

a− d
,

by the division by zero calculus, we have another reasonable result
D = L.

• We recall the Bramaguputa (598-668?) theorem. We assume that for
points A,B,C,D on a circle, AB = a,BD = d, CD = c,DA = b. Let
P be the common point of the line AB and DC, and we set BP =
e, CP = f . Then, we have

e =
dcb+ ad2

(b− c)(b+ d)

and

f =
abd+ cd2

(b− c)(b+ d)
.

When, b = d, then we have e = f = 0.

146



• The area S(x) surrounded by two x, y axises and the line passing a
fixed point (a, b), a, b > 0 and a point (x, 0) is given by

S(x) =
bx2

2(x− a)
. (15.17)

For x = a, we obtain, by the division by zero calculus, the very inter-
esting value

S(a) = ab. (15.18)

• For example, for fixed point (a, b); a, b > 0 and fixed a line y = (tan θ)x, 0 <
θ < π, we will consider the line L(x) passing the two points (a, b) and
(x, 0). Then, the area S(x) of the triangle surround by the three lines
y = (tan θ)x, L(x) and the x axis is given by

S(x) =
b

2

x2

x− (a− b cot θ)
.

For the case x = a− b cot θ, by the division by zero calculus, we have

S(a− b cot θ) = b(a− b cot θ).

Note that this is the area of the parallelogram through the origin and
the point (a, b) formed by the lines y = (tan θ)x and the x axis.

• We consider the regular triangle with the vertexes (−a/2,
√
3a/2),

(a/2,
√
3a/2). Then, the area S(h) of the triangle surrounded by the

three lines that the line through (0, h+
√
3a/2) and (−a/2,

√
3a/2), the

line through (0, h +
√
3a/2) and (a/2,

√
3a/2) and the x- axis is given

by

S(h) =

(
h+ (

√
3/2)a

)2
2h

. (15.19)

Then, by the division by zero calculus, we have, for h = 0,

S(0) =

√
3

2
a2.

• Similarly, we will consider the cone formed by the rotation of the line

kx

a(k + h)
+

y

k + h
= 1
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and the x, y plane with center the z- axis (a, h > 0, and a, h are fixed).
Then, the volume V (x) is given by

V (k) =
π

3

a2(k + h)3

k2
.

Then, by the division by calculus, we have the reasonable value

V (0) = πa2h.

• For the sequence

an =

(
1 +

1

n

)n

, (15.20)

we have, of course, limn→∞ an = e. Meanwhile, by formally, we have

a0 =

(
1 +

1

0

)0

= 10 = 1.

However, we obtain

a0 = exp

{
n log

(
1 +

1

n

)}
n=0

= e, (15.21)

by the division by zero calculus. Indeed, for x = 1/n, we have

n log

(
1 +

1

n

)
=

1

x

(
x− x2

2
+ ...

)
and this equals 1 for the point at infinity, by the division by zero cal-
culus. Note that for the definition by exponential functions by (15.21)
is fundamental.

• For example, for the plane equation

x

a
+
y

b
+
z

c
= 1, (15.22)

for a = 0, we can consider the line naturally, by the division by zero

y

b
+
z

c
= 1. (15.23)
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• For the Gauss map function

f(x) =
1

x
−
[
1

x

]
, (15.24)

we have, automatically, by the division by zero

f(0) = 0.

• For the product and sum representations

Π∞
ν=−∞,ν ̸=0

(
1− z

νπ

)
exp

z

νπ
(15.25)

and
∞∑

ν=−∞,ν ̸=0

(
log
(
1− z

νπ

)
+

z

νπ

)
, (15.26)

we do not need the conditions ν ̸= 0, because, the corresponding terms
are automatically 1 and zero, respectively, by the division by zero.

• Let X and Y be norm spaces and T be a bounded linear operator from
X to Y. Then, its norm is given by

||T || = sup
x ̸=0

||Tx||
||x||

.

However, if x = 0, then Tx = 0 and so, for x = 0,

||Tx||
||x||

= 0.

Therefore, we do not need the condition x ̸= 0 in the definition.

• For aj > 0, we have the inequality

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ n2.

If an = 0, by the division by zero, the inequality holds for n− 1.
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• For the harmonic numbers

Hn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n

=
1

0
+

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
,

we have

Hn = Hn−1 +
1

n
.

Then, H1 = 1 and H2 = 3/2, and we obtain

H0 =
1

0
= 0

(M. Cervnka: 2017.9.22.).

• In the Fermat theorem: for p: a prime number, a is an integer with no
common integer with p, then

ap−1 ≡ 1

with mod p. Then, from
1

a
≡ ap−2

with mod p, we have formally

1

0
≡ 0

with mod p (M. Cervnka: 2017.9.22.).

• For the solutions

x =
−b±

√
b2 − 4ac

2a
(15.27)

of the quadratic equation

ax2 + bx+ c = 0, (15.28)

we have, the solution, for a = 0 and b ̸= 0,

x = −c
b
,

by the division by zero calculus.
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• Let X be a nonnegative random variable with a continuous distribution
F , then the mean residual life functionM(x) is given by, if 1−F (x) > 0,

M(x) =

∫∞
x
(1− F (ξ))dξ

1− F (x)
. (15.29)

However, if 1 − F (x) = 0, automatically, we have M(x) = 0, by the
division by zero.

• As in the line case, in the hyperbolic curve

x2

a2
− y2

b2
= 1, a, b > 0, (15.30)

by the representations by parameters

x =
a

cos θ
=
a

2

(
1

t
+ t

)
and

y =
b

tan θ
=
b

2

(
1

t
− t

)
the origin (0, 0) may be included as the point of the hyperbolic curve,
as we see from the cases θ = π/2 = 0 and t = 0.

In addition, from the fact, we will be able to understand that the
asymptotic lines are the tangential lines of the hyperbolic curve.

The two tangential lines of (15.30) with gradient m is given by

y = mx±
√
a2m2 − b2 (15.31)

and the gradients of the asymptotic lines are

m = ± b

a
. (15.32)

Then, we have asymptotic lines y = ± b
a
x as tangential lines in (15.30).

The common points of (15.30) and (15.31) are given by(
± a2m√

a2m2 − b2
,± b2m√

a2m2 − b2

)
. (15.33)

For the case a2m2 − b2 = 0, we have they are (0, 0).
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• We fix a circle
x2 + (y − a)2 = a2, a > 0. (15.34)

At the point (2a+ d, 0), d > 0, we consider two tangential lines for the
circle. Let 2θ is the angle between two tangential lines at the point
(2a+d, 0), Then, the area S(h) = S(θ) and the length L(x) = L(θ) are
given by

S(h) = S(θ) =
a√
h
(h+ 2a)

3
2 (15.35)

=
a2

cos θ

(
sin θ + 2 +

1

sin θ

)
and

L(h) = L(θ) =
a√
h

√
h+ 2a (15.36)

= a

(
1

cos θ
+ tan θ

)
,

respectively. For h = 0 and θ = 0, by division by zero calculus, we see
that all are zero.

• We consider two spheres defined by

x2 + y2 + z2 + 2aj + 2bj + 2cj + 2dj = 0, j = 1, 2. (15.37)

Then, the angle θ by two spheres is given by

cos θ =
a1a2 + b1b2 + c1c2 − (d1 + d2)√

a21 + b21 + c21 − 2d1
√
a22 + b22 + c22 − 2d2

. (15.38)

If cos θ = 0, then, two spheres are orthogonal or one sphere is a point
sphere.

• For the parabolic equation

y2 = 4px,

two points (pt2, 2pt) and (qt2, 2qt) is a diameter is if and only if

(s− t){t(s+ t) + 2} = 0; s = −t− 2

t
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and the diameter r is given by

r2 = p2(t− s)2{(t+ s)2 + 4}.

Here, we should consider the case t = s = 0 as r = 0 and

0 = −0− 2

0
,

and the x and y axises are the orthogonal two tangential lines of the
parabolic equation.

• For the integral equation, for a constant k∫ x

0

ydx = ky,

we have the general solution

y = C exp
x

k
.

If k = 0, then, of course, we have, y = C.

For the integral equation∫ x

0

ydx = k

∫ x

0

√
1 + (y′)2dx

we have the solution

y =
k

2

(
exp

x

k
+ exp−x

k

)
.

If k = 0, then, we should have y = 0.
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16 What is the zero?

The zero 0 as the complex number or real number is given clearly by the
axioms by the complex number field and real number field.

For this fundamental idea, we should consider the Yamada field con-
taining the division by zero. The Yamada field and the division by zero
calculus will arrange our mathematics, beautifully and completely; this will
be our real and complete mathematics.

Standard value

The zero is a center and stand point (or bases, a standard value) of the
coordinates - here we will consider our situation on the complex or real 2
dimensional spaces. By stereographic projection mapping or the Yamada
field, the point at infinity 1/0 is represented by zero. The origin of the
coordinates and the point at infinity correspond each other.

As the standard value, for the point ωn = exp
(
π
n
i
)
on the unit circle

|z| = 1 is for n = 0:

ω0 = exp
(π
0
i
)
= 1,

π

0
= 0. (16.1)

For the mean value

Mn =
x1 + x2 + ...+ xn

n
,

we have

M0 = 0 =
0

0
.

Fruitful world

For example, very and very general partial differential equations, if the
coefficients or terms are zero, we have some simple differential equations and
the extreme case is all the terms are zero; that is, we have trivial equations
0 = 0; then its solution is zero. When we see the converse, we see that
the zero world is a fruitful one and it means some vanishing world. Recall
Yamane phenomena, the vanishing result is very simple zero, however, it is
the result from some fruitful world. Sometimes, zero means void or nothing
world, however, it will show some changes as in the Yamane phenomena.

From 0 to 0; 0 means all and all are 0
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As we see from our life figure, a story starts from the zero and ends to
the zero. This will mean that 0 means all and all are 0. The zero is a mother
of all.

Impossibility

As the solution of the simplest equation

ax = b (16.2)

we have x = 0 for a = 0, b ̸= 0 as the standard value, or the Moore-Penrose
generalized inverse. This will mean in a sense, the solution does not exist;
to solve the equation (16.2) is impossible. We saw for different parallel lines
or different parallel planes, their common points are the origin. Certainly
they have the common points of the point at infinity and the point infinity
is represented by zero. However, we can understand also that they have no
solutions, no common points, because the point at infinity is an ideal point.

We will consider the point P at the origin with starting at the time t = 0
with velocity V > .0 and the point Q at the point d. > 0 with velocity v > 0.
Then, the time of coincidence P=Q is given by

T =
d

V − v.

When V = v, we have, by the division by zero, T = 0. This zero represents
impossibility. We have many such a situation.

We will consider the simple differential equation

m
d2x

dt2
= 0,m

d2y

dt2
= −mg (16.3)

with the initial conditions, at t = 0

dx

dt
= v0 cosα,

d2x

dt2
=
d2y

dt2
= 0. (16.4)

Then, the highest high h, arriving time t, the distance d from the starting
point origin to the point y(2t) = 0 are given by

h =
v0 sin

2 α

2g
, d =

v0 sinα

g
(16.5)
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and

t =
v0 sinα

g
. (16.6)

For the case g = 0, we have h = d = t = 0. We considered the case that
they are the infinity; however, our mathematics means zero, which shows
impossibility.

These phenomena were looked many cases on the universe; it seems that
God does not like the infinity.

156



17 Conclusion

Apparently, the common sense on the division by zero with a long and mys-
terious history is wrong and our basic idea on the space around the point
at infinity is also wrong since Euclid. On the gradient or on derivatives we
have a great missing since tan(π/2) = 0. Our mathematics is also wrong in
elementary mathematics on the division by zero.

This book is an elementary mathematics on our division by zero as the
first publication of books for the topics. The contents have wide connections
to various fields beyond mathematics. The author expects the readers write
some philosophy, papers and essays on the division by zero from this simple
source book.

The division by zero theory may be developed and expanded greatly as in
the author’s conjecture whose break theory was recently given surprisingly
and deeply by Professor Qi’an Guan [20] since 30 years proposed in [51] (the
original is in [50]).

We have to arrange globally our modern mathematics with our division
by zero in our undergraduate level.

We have to change our basic ideas for our space and world.
We have to change globally our textbooks and scientific books on the

division by zero.
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