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Abstract: We will show in this book that our basic idea for our space
is wrong since Euclid, simply and clearly for some general people over high
school students by using many simple figures. The common sense on the
division by zero with a long and mysterious history is wrong and our basic
idea on the space around the point at infinity is also wrong since Euclid. On
the gradient or on derivatives we have a great missing since tan(π/2) = 0.
Our mathematics is also wrong in elementary mathematics on the division by
zero. In this book, we will show and give various applications of the division
by zero 0/0 = 1/0 = z/0 = 0 with many figures. In particular, we will
introduce several fundamental concepts on Euclidian geometry which show
new elementary concepts on our space. We will know that the division by
zero is our elementary and fundamental mathematics.
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Preface

The division by zero has a long and mysterious story over the world
(see, for example, H. G. Romig [19] and Google site with the division by
zero) with its physical viewpoints since the document of zero in India on AD
628. In particular, note that Brahmagupta (598 -668 ?) established the four
arithmetic operations by introducing 0 and at the same time he defined as
0/0 = 0 in Brhmasphuasiddhnta. Our world history, however, stated that
his definition 0/0 = 0 is wrong over 1300 years, but, we will see that his
definition is right and suitable.

The division by zero 1/0 = 0/0 = z/0 itself will be quite clear and trivial
with several natural extensions of the fractions against the mysterously long
history, as we can see from the concepts of the Moore-Penrose generalized
inverses or the Tikhonov regularization method to the fundamental equation
az = b, whose solution leads to the definition z = b/a.

However, the result (definition) will show that for the elementary mapping

W =
1

z
, (0.1)

the image of z = 0 is W = 0 (should be defined from the form). This
fact seems to be a curious one in connection with our well-established popular
image for the point at infinity on the Riemann sphere ([2]). As the repre-
sentation of the point at infinity of the Riemann sphere by the zero z = 0,
we will see some delicate relations between 0 and ∞ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We did not
consider any value of the elementary function W = 1/z at the origin z = 0,
because we did not consider the division by zero 1/0 in a good way. Many
and many people consider its value by the limiting like +∞ and −∞ or the
point at infinity as ∞. However, their basic idea comes from continuity
with the common sense or based on the basic idea of Aristotle. – For the
related Greece philosophy, see [29, 30, 31]. However, as the division by zero
we will consider its value of the function W = 1/z as zero at z = 0. We will
see that this new definition is valid widely in mathematics and mathematical
sciences, see ([11, 14]) for example. Therefore, the division by zero will give
great impacts to calculus, Euclidean geometry, analytic geometry, differen-
tial equations, complex analysis in the undergraduate level and to our basic
ideas for the space and universe.

We have to arrange globally our modern mathematics in our undergrad-
uate level. Our common sense on the division by zero will be wrong, with
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our basic idea on the space and the universe since Aristotle and Euclid. We
would like to show clearly these facts in this book, in particular, with ele-
mentary geometry for some general people. The purpose of this book is to
show our new space concepts clearly and for this purpose we will use many
simple figures.

Saburou Saitoh, Kiryu, Japan
and
Hiroshi Okumura, Maebashi, Japan

3



Acknowledgements

For the initial stage, we had many interesting and exciting communica-
tions with, in particular, the following Professors and Drs:

H. G. W. Begehr, Yoshihide Igarashi, Masao Kuroda, Hiroshi Michiwaki,
Mitsuharu Ohtani, Matteo Dalla Riva, Lukasz T. Stepien, Masako Takagi,
Si-Ei Takahasi, Dimitry Vorotnikov, and Masami Yamane.

Since the second stage, the following Professors gave many valuable sug-
gestions and comments on our division by zero:

Haydar Akca, A.D.W. Anderson, I. Barukcic, J. A. Bergstra, M. Cer-
venka, J. Czajko, Takeo Ohsawa, Hiroshi Okumura, Tsutomu Matsuura,
Sandra Pinelas, L.C. Paulson, F. Stenger.

Meanwhile, we are having interesting negative comments from several
people on our division by zero. However, they seem to be just traditional and
old feelings, and they are not reasonable at all for the authors. The typical
good comment for the first draft is given by some physician as follows:

Here is how I see the problem with prohibition on division by zero, which
is the biggest scandal in modern mathematics as you rightly pointed out
(2017.10.14.08:55).

4



Contents

Introduction – simple history of the division by zero

Introduction and definitions of general fractions

By the Tikhonov regularization
By the Takahasi uniqueness theorem
By the intuitive meaning of the fractions (division) by H. Michiwaki
Other introductions of general fractions

Division by zero calculus

Introduction of the division by zero calculus
Ratio
Remarks for the applications of the division by zero and the division by

zero calculus

Derivatives of functions

Triangles and division by zero

Euclidean spaces and division by zero

Broken phenomena of figures by area and volume
Parallel lines
Tangential lines and tan π

2
= 0

Two circles
Newton’s method
Cauchy’s mean value theorem
Length of tangential lines
Curvature and center of curvature
n = 2, 1, 0 regular polygons inscribed in a disc
Our life figure
H. Okumura’s example
Interpretation by analytic geometry

Mirror image with respect to a circle

Stereographic projection

The point at infinity is represented by zero
A contradiction of classical idea for 1/0 = ∞
Natural meanings of 1/0 = 0

5



Double natures of the zero point z = 0

Interesting examples in the division by zero

Applications to Wasan geometry

Circle and line
Three externally touching circles
The Descartes circle theorem
Circles and a chord

Conclusion

References

6



1 Introduction - Simple History of the Divi-

sion by Zero

By a natural extension of the fractions

b

a
(1.1)

for any complex numbers a and b, we found the simple and beautiful result,
for any complex number b

b

0
= 0, (1.2)

incidentally in [21] by the Tikhonov regularization for the Hadamard product
inversions for matrices and we discussed their properties and gave several
physical interpretations on the general fractions in [6] for the case of real
numbers. The result is a very special case for general fractional functions in
[4].

The division by zero has a long and mysterious story over the world
(see, for example, H. G. Romig [19] and Google site with the division by
zero) with its physical viewpoints since the document of zero in India on AD
628. In particular, note that Brahmagupta (598 -668 ?) established the four
arithmetic operations by introducing 0 and at the same time he defined as
0/0 = 0 in Brhmasphuasiddhnta. Our world history, however, stated that
his definition 0/0 = 0 is wrong over 1300 years, but, we will see that his
definition is right and suitable.

Indeed, we will show typical examples for 0/0 = 0. However, in this
introduction, these examples are based on some natural feelings and are not
mathematics, because we do still not give the definition of 0/0. However,
following our new mathematics, these examples and results may be accepted
as natural ones later:

The conditional probability P (A|B) for the probability of A under the
condition that B happens is given by the formula

P (A|B) =
P (A ∩B)

P (B)
.

If P (B) = 0, then, of course, P (A∩B) = 0 and from the meaning, P (A|B) =
0 and so, 0/0 = 0.
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For the representation of inner product in vectors

cos θ =
A ·B
AB

=
AxBx + AyBy + AzBz√

A2
x + A2

y + A2
z

√
B2

x +B2
y +B2

z

,

if A or B is the zero vector, then we see that 0 = 0/0. In general, the zero
vector is orthogonal for any vector and then, cos θ = 0.

For the differential equation

dy

dx
=

2y

x
,

we have the general solution with constant C

y = Cx2.

At the origin (0, 0) we have

y′(0) =
0

0
= 0.

For three points a, b, c on a circle with center at the origin on the complex
z-plane with radius R, we have

|a+ b+ c| = |ab+ bc+ ca|
R

.

If R = 0, then a, b, c = 0 and we have 0 = 0/0.
For a circle with radius R and for an inscribed triangle with side lengths

a, b, c, and further for the inscribed circle with radius r for the triangle, the
area S of the triangle is given by

S =
r

2
(a+ b+ c) =

abc

4R
. (1.3)

If R = 0, then we have

S = 0 =
0

0
(1.4)

(H. Michiwaki: 2017.7.28.).
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We have furthermore many and concrete examples as we will see in this
book.

However, we do not know the reason and motivation of the definition of
0/0 = 0 by Brahmagupta, furthermore, for the important case 1/0 we do
not know any result there. – Indeed, we find many and many wrong logics
on the division by zero, without the definition of the division by zero z/0.
However, Sin-Ei Takahasi ([6]) discovered a simple and decisive interpretation
(1.2) by analyzing the extensions of fractions and by showing the complete
characterization for the property (1.2):

Proposition 1. Let F be a function from C×C to C satisfying

F (b, a)F (c, d) = F (bc, ad)

for all
a, b, c, d ∈ C

and

F (b, a) =
b

a
, a, b ∈ C, a ̸= 0.

Then, we obtain, for any b ∈ C

F (b, 0) = 0.

Note that the complete proof of this proposition is simply given by 2 or
3 lines, as we will give its complete proof later.

In a long mysterious history of the division by zero, this proposition seems
to be decisive. Since the publication of the paper, over fully four years we
see still curious information on the division by zero and we see still many
wrong opinions on the division by zero.

Indeed, the Takahasi’s assumption for the product property should be
accepted for any generalization of fraction (division). Without the product
property, we will not be able to consider any reasonable fraction (division).

Following the proposition, we should define

F (b, 0) =
b

0
= 0,

and consider, for any complex number b, as (1.2); that is, for the mapping

W =
1

z
, (1.5)
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the image of z = 0 is W = 0 (should be defined from the form). This
fact seems to be a curious one in connection with our well-established popular
image for the point at infinity on the Riemann sphere ([2]). As the repre-
sentation of the point at infinity of the Riemann sphere by the zero z = 0,
we will see some delicate relations between 0 and ∞ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We did not
consider any value of the elementary function W = 1/z at the origin z = 0,
because we did not consider the division by zero 1/0 in a good way. Many
and many people consider its value by the limiting like +∞ and −∞ or the
point at infinity as ∞. However, their basic idea comes from continuity
with the common sense or based on the basic idea of Aristotle. – For the
related Greece philosophy, see [29, 30, 31]. However, as the division by zero
we will consider its value of the function W = 1/z as zero at z = 0. We will
see that this new definition is valid widely in mathematics and mathematical
sciences, see ([11, 14]) for example. Therefore, the division by zero will give
great impacts to calculus, Euclidian geometry, analytic geometry, complex
analysis and the theory of differential equations in an undergraduate level
and furthermore to our basic ideas for the space and universe.

Meanwhile, the division by zero (1.2) was derived from several indepen-
dent approaches as in:

1) by the generalization of the fractions by the Tikhonov regularization
or by the Moore-Penrose generalized inverse to the fundamental equation
az = b that leads to the definition of the fraction z = b/a,

2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

3) by the unique extension of the fractions by S. Takahasi, as in the above,

4) by the extension of the fundamental function W = 1/z from C \ {0}
into C such that W = 1/z is a one to one and onto mapping from C \ {0}
onto C \ {0} and the division by zero 1/0 = 0 is a one to one and onto
mapping extension of the function W = 1/z from C onto C, – Here, we can
consider the above on the real numbers R for the function y = 1/x –

and

5) by considering the values of functions with the mean values of func-
tions.

Furthermore, in ([10]) we gave the results in order to show the reality of
the division by zero in our world:
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A) a field structure containing the division by zero — the Yamada field
Y,

B) by the gradient of the y axis on the (x, y) plane — tan π
2
= 0,

C) by the reflection W = 1/z of W = z with respect to the unit circle
with center at the origin on the complex z plane — the reflection point of
zero is zero, (The classical result is wrong, see [14]),

and

D) by considering rotation of a right circular cone having some very in-
teresting phenomenon from some practical and physical problem.

Furthermore, in ([11],[21]), we discussed many division by zero properties
in the Euclidean plane - however, precisely, our new space is not the Eu-
clidean space. More recently, we see the great impact to Euclidian geometry
in connection with Wasan in ([15, 16, 17]). In ([7]), we gave beautiful geo-
metrical interpretations of determinants from the viewpoint of the division
by zero.

In this book, in order to show simply our new space introduced by the
division by zero we will discuss the division by zero in Euclidian geometry by
using many simple figures. We will be able to see that the division by zero
is our elementary and fundamental mathematics.
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2 Introduction and definitions of general frac-

tions

We first introduce several definitions of our general fractions containing the
division by zero. We will give the logical background simply and essential
principles for our division by zero.

2.1 By the Tikhonov regularization

For any real numbers a and b containing 0, we will introduce general fractions

b

a
. (2.1)

We will think that for the fraction (2.1), it will be given by the solution
of the equation

ax = b.

Here, in order to see its essence, we will consider all on the real number field
R. However, since 0 · x = 0, for b ̸= 0, this equation has not any solution
for the case a = 0, and so, by the concept of the Tikhonov regularization
method, we will consider the equation as follows:

For any fixed λ > 0, the minimum member of the Tikhonov function in x

λx2 + (ax− b)2; (2.2)

that is,

xλ(a, b) =
ab

λ+ a2
(2.3)

may be considered as the fraction in the sense of Tikhonov with parameter
λ, in a generalized sense. Note that the limit

lim
λ→+0

xλ(a, b)

exists always. By the limit

lim
λ→+0

xλ(a, b) =
b

a
, (2.4)

we will define the general fractions b
a
.
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Note that, for a ̸= 0, the definition (2.4) is the same as the ordinary
sense, however, when a = 0, we obtain the desired results b/0 = 0, since
xλ(0, b) = 0, always.

The result (2.4) is a trivial Moore-Penrose generalized inverse (so-
lution) for the equation ax = b that is well-established and fundamental. For
this reason, we may consider that the division by zero is trivial and clear
against the great and mysterious history of the division by zero.

For the general theory of the Tikhonov regularization and many applica-
tions, see the cited references, for example, [22].

2.2 By the Takahasi uniqueness theorem

Sin-Ei, Takahashi ([25]) established a simple and natural interpretation (1.2)
by analyzing any extensions of fractions and by showing the complete char-
acterization for such property (1.2). Furthermore, he examined several fun-
damental properties of the general fractions. His result will show that our
mathematics says that the results (1.2) should be accepted as natural ones.

Theorem Let F be a function from C×C to C such that

F (a, b)F (c, d) = F (ac, bd)

for all
a, b, c, d ∈ C

and
F (a, b) =

a

b
, a, b ∈ C, b ̸= 0.

Then, we obtain, for any a ∈ C

F (a, 0) = 0.

Proof. We have F (a, 0) = F (a, 0)1 = F (a, 0)2
2
= F (a, 0)F (2, 2) =

F (a · 2, 0 · 2) = F (2a, 0) = F (2, 1)F (a, 0) = 2F (a, 0).
Thus F (a, 0) = 2F (a, 0) which implies the desired result F (a, 0) = 0 for

all a ∈ C.

Several mathematicians pointed out to the authors for the publication of
the paper ([6]) that the notations of 100/0 and 0/0 are not good for the sake
of the generalized senses, however, there does not exist other natural and
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good meaning for them. Why should we need and use any new notations for
involving the notations? We should use the notation, we think so. Indeed,
we will see in this book that many and many fractions in our formulas will
have this meaning with the concept of the division by zero calculus for the
case of functions.

Note, in particular, that the Takahasi assumption on the product property
for fractions (division) is fundamental and if the assumption is not satisfied,
any fractions (division) in a generalized sense will not have a reasonable sense
or will not be a good existence.

2.3 By the intuitive meaning of the fractions (division)
by H. Michiwaki

We will introduce an another approach. The division b/a may be defined in-
dependently of the product. Indeed, in Japan, the division b/a ; b raru
a (jozan) is defined as how many a exists in b, this idea comes from subtrac-
tion a repeatedly. (Meanwhile, product comes from addition). In Japanese
language for ”division”, there exists such a concept independently of product.
H. Michiwaki and his 6 years old daughter said for the result 100/0 = 0 that
the result is clear, from the meaning of the fractions independently of the
concept of product and they said: 100/0 = 0 does not mean that 100 = 0×0.
Meanwhile, many mathematicians had a confusion for the result. Her under-
standing is reasonable and may be acceptable: 100/2 = 50 will mean that
we divide 100 by 2, then each will have 50. 100/10 = 10 will mean that we
divide 100 by 10, then each will have 10. 100/0 = 0 will mean that we do
not divide 100, and then nobody will have at all and so 0. Furthermore, she
said then the rest is 100; that is, mathematically;

100 = 0 · 0 + 100.

Now, all the mathematicians may accept the division by zero 100/0 = 0 with
natural feelings as a trivial one?

For simplicity, we shall consider the numbers on non-negative real num-
bers. We wish to define the division (or fraction) b/a following the usual
procedure for its calculation, however, we have to take care for the division
by zero: The first principle, for example, for 100/2 we shall consider it as
follows:

100− 2− 2− 2−, ...,−2.
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How may times can we subtract 2? At this case, it is 50 times and so, the
fraction is 50. The second case, for example, for 3/2 we shall consider it as
follows:

3− 2 = 1

and the rest (remainder) is 1, and for the rest 1, we multiple 10, then we
consider similarly as follows:

10− 2− 2− 2− 2− 2 = 0.

Therefore 10/2 = 5 and so we define as follows:

3

2
= 1 + 0.5 = 1.5.

By these procedures, for a ̸= 0 we can define the fraction b/a, usually. Here
we do not need the concept of product. Except the zero division, all the
results for fractions are valid and accepted. Now, we shall consider the zero
division, for example, 100/0. Since

100− 0 = 100,

that is, by the subtraction 100 − 0, 100 does not decrease, so we can not
say we subtract any from 100. Therefore, the subtract number should be
understood as zero; that is,

100

0
= 0.

We can understand this: the division by 0 means that it does not divide 100
and so, the result is 0. Similarly, we can see that

0

0
= 0.

As a conclusion, we should define the zero division as, for any b

b

0
= 0.

See [6] for the details.
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2.4 Other introductions of general fractions

By the extension of the fundamental function W = 1/z from C \ {0} onto
C such that W = 1/z is a one to one and onto mapping from C \ {0} onto
C \ {0} and the division by zero 1/0 = 0 is a one to one and onto mapping
extension of the function W = 1/z from C onto C.

In this paragraph, we can consider in the above, for complex, real, for W ,
y, for z, x and for C, R.

On the division by zero in our theory, we will need only one new as-
sumption in our mathematics that for the elementary function W = 1/z,
W (0) = 0. However, for algebraic calculation of the division by zero, we
have to follow the law of the Yamada field. As the number system contain-
ing the division by zero, the concept of the Yamada field is very fundamental,
however, for some simple book for some general people, we do not refer to
it. For functions, however, we have to consider the concept of the division
by zero calculus.
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3 Division by zero calculus

As the number system containing the division by zero, the Yamada field
structure is complete.

However for applications of the division by zero to functions, we will
need the concept of division by zero calculus for the sake of uniquely deter-
minations of the results and for other reasons. See [11].

For example, for the typical linear mapping

y =
x− 1

x+ 1
, (3.1)

it gives a mapping on {R \ {−1}} onto {R \ {1}} in one to one and from

y = 1 +
−2

x− (−1)
, (3.2)

we see that −1 corresponds to 1 and so the function maps the whole {R}
onto {R} in one to one.

Meanwhile, note that for

y = (x− 1) · 1

x+ 1
, (3.3)

we should not enter x = −1 in the way

[(x− 1)]x=1 ·
[

1

x+ 1

∣∣∣∣
x=1

= (−2) · 0 = 0. (3.4)

However, in may cases, the above two results will have practical meanings
and so, we will need to consider many ways for the application of the division
by zero and we will need to check the results obtained, in some practical
viewpoints. We will refer to this delicate problem with many examples.

3.1 Introduction of the division by zero calculus

We will introduce the division by zero calculus: For any formal (Laurent)
expansion around x = a,

f(x) =
−1∑

n=−∞

Cn(x− a)n + C0 +
∞∑
n=1

Cn(x− a)n (3.5)
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we obtain the identity, by the division by zero

f(a) = C0. (3.6)

Note that here, there is no problem on any convergence of the expansion
(3.5) at the point x = a.

For the correspondence (3.6) for the function f(x), we will call it the
division by zero calculus. By considering the formal derivatives in (3.5),
we can define any order derivatives of the function f at the singular point a
as follows:

f (n)(a) = n!Cn.

In order to avoid any logical confusion in the division by zero, we would
like to refer to the logical essence:

For the elementary function W = f(z) = 1/z, we define f(0) = 0
and we will write it by 1/0 following the form, apart from the sense
of the intuitive sense of fraction. With only this new definition, we
can develop our mathematics, through the division by zero calcu-
lus.

As a logical line for the division by zero, we can consider as follows:
We define 1/0 = 0 for the form; this precise meaning is that for the

function W = f(x) = 1/x, we have f(0) = 0 following the form. Then, we
can define the division by zero calculus (3.6) for (3.5). In particular, from
the function f(x) ≡ 0 we have 0/0 = 0. In this sense, 1/0 = 0 is more
fundamental than 0/0 = 0; that is, from 1/0 = 0, 0/0 = 0 is derived.

For some general people, we would like to refer to some simple facts:

The Laurent expansion (3.5) is considered in the theory of analytic func-
tion theory, but we can consider it a formal expansion of the function f(x)
around the point at a and the summation may be considered as in a finite
summation. The coefficients Cn are determined uniquely as in the coeffi-
cients in polynomials. The Laurent coefficients are determined formally and
for typical functions we can find the Laurent expansions by many hand books;
that is, the division by zero calculus may be calculated formally.

However, for functions we see that the results by the division by zero
calculus have not always practical senses and so, for the results by division
by zero we should check the results, case by case.
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For example, for the simple example for the line equation on the x, y
plane

ax+ by + c = 0

we have, formally

x+
by + c

a
= 0,

and so, by the division by zero, we have, for a = 0, the reasonable result

x = 0.

Indeed, for the equation y = mx, from

y

m
= x,

we have, by the division by zero, x = 0 for m = 0. This gives the case
m = ±∞ of the gradient of the line. – This will mean that the equation
y = mx represents the general line through the origin in this sense. – This
method was applied in many cases, for example see [15, 16].

However, from
ax+ by

c
+ 1 = 0,

for c = 0, we have the contradiction, by the division by zero

1 = 0.

Meanwhile, note that for the function f(x) = x + 1
z
, f(0) = 0, however,

for the function

f(x)2 = x2 + 2 +
1

x2
,

we have f 2(0) = 2. Of course,

f(0) · f(0) = {f(0)}2 = 0.

Furthermore, see many examples, [11].
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3.2 Ratio

On the real x− line, we fix two different point P1(x1) and P2(x2) and we will
consider the point, with a real number

P (x; r) =
x1 + rx2

1 + r
. (3.7)

If r = 1, then the point P (x; 1) is the mid point of the two points P1 and
P2 and for r > 0, the point P is on the interval (x1, x2). Meanwhile, for
−1 < r < 0, the point P is on (−∞, x1) and for r < −1, the point P is on
(x2,+∞). Of course, for r = 0, P = P1. We see that r tends to +∞ and
−∞, P tends to the point P2. We see the pleasant fact that by the division
by zero calculus, P (x,−1) = P2. For this fact we see that for all real numbers
r correspond to all real line numbers.

In particular, we see that in many text books on the undergraduate course
the formula (3.7) is stated as a parameter representation of the line through
the two pints P1 and P2. However, if we do not consider the case r = −1
by the division by zero calculus, the classical statement is not right, because
the point P2 may not be considered.

On this setting, we will consider another representation

P (x;m,n) =
mx2 − nx1

m− n

for the exterior division point P (x;m,n) in m : n for the point P1 and P2.
For m = n. we obtain, by the division by zero calculus, P (x;m,m) = x2.
Imagine the result that the point P (x;m,m) = P2 and the point P2 seems
to be the point P1. Such a strong discontinuity happens for many cases. See
[11, 14].

By the division by zero, we can introduce the ratio for any complex num-
bers a, b, c, d as

AC

CB
=

c− a

b− c
. (3.8)

We will consider the Appollonius circle determined by the equation

AP

PB
=

|z − a|
|b− z|

=
m

n
(3.9)
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for fixed m,n ≥ 0. Then, we obtain the equation for the cirlce∣∣∣∣z − −n2a+m2b

m2 − n2

∣∣∣∣2 = m2n2

(m2 − n2)2
· |b− a|2. (3.10)

If m = n ̸= 0, the circle is the line in (3.10). For |m| + |n| ̸= 0, if m = 0,
then z = a and if n = 0, then z = b. If m = n = 0 then z is a or b.

The representation (3.10) is valid always, however, (3.10) is not reasonable
for m = n. The property of the division by zero depends on the representa-
tions of formulas.

On the real line, the points P (p), Q(1), R(r), S(−1) form a harmonic
range of points if and only if

p =
1

r
.

If r = 0, then we have p = 0 that is now the representation of the point at
infinity(see Figure 1) (H. Okumura: 2017.12.27.).

1
3

B

3

A

1 2−1−2 0

Figure 1.

3.3 Remarks for the applications of the division by
zero and the division by zero calculus

As the number system, we can calculus by the Yamada field structure. How-
ever, for functions, the problems are involved for their structures and we
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have also the delicate problems for the smoothness of functions. So, by ap-
plying the division by zero, we should consider and apply the division by
zero and division by zero calculus in many ways and check the results ob-
tained. By considering many ways, we will be able to see many new aspects
and results. By checking the results obtained, we will be able to find new
prospects. With this idea, we can enjoy the division by zero calculus with
free spirits without logical problems. – In this idea, we may ask what
is mathematics?
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4 Derivatives of a function

On derivatives, we obtain new concepts, from the division by zero. We will
consider the fundamentals, first.

From the viewpoint of the division by zero, when there exists the limit,
at x

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= ∞ (4.1)

or
f ′(x) = −∞, (4.2)

both cases, we can write them as follows:

f ′(x) = 0. (4.3)

This property was derived from the fact that the gradient of the y axis is

zero; that is,

tan
π

2
= 0, (4.4)

that was derived from many geometric properties in [11], and also in the
formal way from the result 1/0 = 0. Of course, by the division by zero
calculus, we can derive the result.

For the double angle formula

tan 2α =
2 tanα

1− tan2 α
, (4.5)

for α = π/2, we have:

0 =
2 · 0
1− 0

. (4.6)

We will look this fundamental result by elementary functions. For the
function

y =
√
1− x2, (4.7)

y′ =
−x√
1− x2

, (4.8)

and so,
[y′]x=1 = 0, [y′]x=−1 = 0. (4.9)

Of course, depending on the context, we should refer to the derivatives
of a function at a point from the right hand direction and the left hand
direction.
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Here, note that, for x = cos θ, y = sin θ,

dy

dx
=

dy

dθ

(
dx

dθ

)−1

= − cot θ.

Note also that from the expansion

cot z =
1

z
+

+∞∑
ν=−∞,ν ̸=0

(
1

z − νπ
+

1

νπ

)
(4.10)

or the Laurent expansion

cot z =
∞∑

n=−∞

(−1)n22nB2n

(2n)!
z2n−1,

we have
cot 0 = 0.

Note that in (4.10), since(
1

z − νπ
+

1

νπ

)
ν=0

=
1

z
, (4.11)

we can write it simply

cot z =
+∞∑

ν=−∞

(
1

z − νπ
+

1

νπ

)
. (4.12)

The differential equation

y′ = −x

y
(4.13)

with a general solution
x2 + y2 = a2 (4.14)

is satisfied for all the points of the solutions by the division by zero, however,
the differential equations

x+ yy′ = 0, y′ · y
x
= −1 (4.15)

are not satisfied for the all points of the solutions, because they may not be
considered at the points (0,−a) and (0, a) in the usual sense.
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For the function y = log x,

y′ =
1

x
, (4.16)

and so,
[y′]x=0 = 0. (4.17)

For the elementary ordinary differential equation

y′ =
dy

dx
=

1

x
, x > 0, (4.18)

how will be the case at the point x = 0? From its general solution, with a
general constant C (see Figure 2)

y = log x+ C, (4.19)

we see that

y′(0) =

[
1

x

]
x=0

= 0, (4.20)

that will mean that the division by zero 1/0 = 0 is very natural.
In addition, note that the function y = log x has infinite order derivatives

and all the values are zero at the origin, in the sense of the division by zero.

1

C

Figure 2.
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However, for the derivative of the function y = log x, we have to fix the
sense at the origin, clearly, because the function is not differentiable, but it
has a singularity at the origin. For x > 0, there is no problem for (4.16) and
(4.17). At x = 0, we see that we can not consider the limit in the sense (4.1).
However, x > 0 we have (4.17) and

lim
x→+0

(log x)′ = +∞. (4.21)

In the usual sense, the limit is +∞, but in the present case, in the sense of
the division by zero, we have:[

(log x)′
]
x=0

= 0 (4.22)

and we will be able to understand its sense graphically.
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5 Triangles and division by zero

In order to see how elementary of the division by zero, we will see the division
by zero in triangles as the fundamental objects. Even the case of triangles,
we can derive new concepts and results.

We will consider a triangle ABC with length a, b, c. Let θ be the angle of
the side BC and the bisector line of A. Then, we have the identity

tan θ =
c+ b

c− b
tan

A

2
, b < c.

For c = b, we have

tan θ =
2b

0
tan

A

2
.

Of course, θ = π/2; that is,

tan
π

2
= 0.

Here, we used
2b

0
= 0

and not by the division by zero calculus

c+ b

c− b
= 1 +

2b

c− b

and for c = b
c+ b

c− b
= 1.

Of course, θ = π/2.
We have the formula

a2 + b2 − c2

a2 − b2 + c2
=

tanB

tanC
.

If a2 + b2 − c2 = 0, then C = π/2. Then,

0 =
tanB

tan π
2

=
tanB

0
.

Meanwhile, for the case a2 − b2 + c2 = 0, then B = π/2, and we have

a2 + b2 − c2

0
=

tan π
2

tanC
= 0.
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Meanwhile, the lengths f and f ′ of the bisector lines of A and in the out
of the triangle ABC are given by

f =
2bc cos A

2

b+ c

and

f ′ =
2bc sin A

2

b− c
,

respectively.
If b = c, then we have f ′ = 0, by the division by zero. However, note

that, from

f ′ = 2 sin
A

2

(
c+

c2

b− c

)
,

by the division by zero calculus, for b = c, we have

f ′ = 2b sin
A

2
= a.

The result f ′ = 0 is a now popular property, but the result f ′ = a is also an
interesting popular property. See [11].

Let H be the perpendicular leg of A to the side BC and let E and M
be the mid points of AH and BC, respectively. Let θ be the angle of EMB
(b > c). Then, we have

1

tan θ
=

1

tanC
− 1

tanB
.

If B = C, then θ = π/2 and tan(π/2) = 0.
In the formula

cosA =
b2 + c2 − a2

2bc
,

if b or c is zero, then, by the division by zero, we have cosA = 0. Therefore,
then we should understand as A = π/2.

This result may be derived from the formulas

sin2 A

2
=

(a− b+ c)(a+ b− c)

4bc

and

cos2
A

2
=

(a+ b+ c)(−a+ b+ c)

4bc
,
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by applying the division by zero calculus.
Let r be the radius of the inscribed circle of the triangle ABC, and

rA, rB, rC be the distances from A,B,C to the lines BC, CA, AB, respec-
tively. Then we have

1

r
=

1

rA
+

1

rB
+

1

rC
.

When the point A is the point at infinity, then, rA = 0 and rB = rC = 2r
and the identity still holds.

A

B CD

F

E

r

I

Figure 3.

I

b

c

A

C B

F

E

r

hb

hc

Figure 4.
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Figure 5.

α = 0

B

C

r

Figure 6.

We have the identities, for the radius R of the circumscribed circle of the
triangle ABC,

S =
arA
2

=
1

2
bc sinA

=
1

2
a2

sinB sinC

sinA

=
abc

4R
= 2R2 sinA sinB sinC = rs, s =

1

2
(a+ b+ c).

If A is the point at infinity, then, S = s = rA = b = c = 0 and the above
identities all valid.
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A

2α

B

C

Figure 7.

For the identity

tan
A

2
=

r

s− a
,

if the point A is the point at infinity, A = 0, s−a = 0 and the identity holds as
0 = r/0. Meanwhile, if A = π, then the identity holds as tan(π/2) = 0 = 0/s.

In a triangle ABC, let X be the leg of the perpendicular line from A to
the line BC and let Y be the common point of the bisector line of A and
the line BC. Let P and Q be the tangential points on the line BC with the
incircle of the triangle and the escribed circle in the sector with the angle A,
respectively. Then, we know that

XP

PY
=

XQ

QY
.

If AB = AC, then, of course, X=Y=P=Q. Then, we have:

0

0
=

0

0
= 0.

Let X,Y, Q be the common points with a line and three lines AC, BC and
AB, respectively. Let P be the common point with the line AB and the line
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through the point C and the common point of the lines AY and BX. Then,
we know the identity

AP

AQ
=

BP

BQ
.

If two lines XY and AB are parallel, then the point Q may be considered as
the point at infinity. Then, by the interpretation AQ = BQ = 0, the identity
is valid as

AP

0
=

BP

0
= 0.

For the tangential function, note that:

In the formula

tan
θ

2
=

sin θ

1 + cos θ
= ±

√
1− cos θ

1 + cos θ
, (5.1)

for θ = π, we have: 0=0/0.
In the formula

tan z1 ± tan z2 =
sin(z1 + z2)

sin z1 sin z2
, (5.2)

for z1 = π/2, z2 = 0, we have: 0=1/0.
In the elementary identity

tan(α + β) =
tanα + tan β

1− tanα tan β
, (5.3)

for the case α = β = π/2, we have

tan
π

2
=

1 + 1

1− 1 · 1
=

2

0
− 0. (5.4)
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6 Euclidean spaces and division by zero

In this section, we will see the division by zero properties on the Euclidean
spaces. Since the impact of the division by zero and division by zero calculus
is widely expanded in elementary mathematics, here, elementary topics will
be introduced as the first stage.

6.1 Broken phenomena of figures by area and volume

The strong discontinuity of the division by zero around the point at infinity
will be appeared as the broken of various figures. These phenomena may
be looked in many situations as the universe one. However, the simplest
cases are disc and sphere (ball) with radius 1/R. When R → +0, the areas
and volumes of discs and balls tend to +∞, respectively, however, when
R = 0, they are zero, because they become the half-plane and half-space,
respectively. These facts may be also looked by analytic geometry, as we
see later. However, the results are clear already from the definition of the
division by zero:

For this fact, note the following:
The behavior of the space around the point at infinity may be considered

by that of the origin by the linear transform W = 1/z (see [2]). We thus see
that

lim
z→∞

z = ∞, (6.1)

however,
[z]z=∞ = 0, (6.2)

by the division by zero. Here, [z]z=∞ denotes the value of the function W =
z at the topological point at the infinity in one point compactification by
Aleksandrov. The difference of (6.1) and (6.2) is very important as we see
clearly by the function W = 1/z and the behavior at the origin. The limiting
value to the origin and the value at the origin are different. For surprising
results, we will state the property in the real space as follows:

lim
x→+∞

x = +∞, lim
x→−∞

x = −∞, (6.3)

however,
[x]+∞ = 0, [x]−∞ = 0. (6.4)
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Of course, two points +∞ and −∞ are the same point as the point at infinity.
However, ± will be convenient in order to show the approach directions. In
[11], we gave many examples for this property.

In particular, in z → ∞ in (6.1), ∞ represents the topological point on
the Riemann sphere, meanwhile ∞ in the left hand side in (6.1) represents
the limit by means of the ϵ - δ logic.

6.2 Parallel lines

We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2. (6.5)

The common point is given by, if a1b2 − a2b1 ̸= 0; that is, the lines are not
parallel (

b1c2 − b2c1
a1b2 − a2b1

,
a2c1 − a1c2
a1b2 − a2b1

)
. (6.6)

By the division by zero, we can understand that if a1b2 − a2b1 = 0, then the
commom point is always given by

(0, 0), (6.7)

even the two lines are the same. This fact shows that the image of the
Euclidean space is right, because any line is extended to the point at infinity
and the point is represented by zero; the origin.

In particular, note that the concept of parallel lines is very important
in the Euclidean plane and non-Euclidean geometry. In our sense, there is
no parallel line and all lines pass the origin. This will be our world in the
Euclidean plane. However, this property is not geometrical and has a strong
discontinuity. This surprising property may be looked clearly by the polar
representation of a line.

We write a line by the polar coordinate

r =
d

cos(θ − α)
, (6.8)

where d = OH > 0 is the distance of the origin O and the line such that OH
and the line is orthogonal and H is on the line, α is the angle of the line OH
and the positive x axis, and θ is the angle OP (P = (r, θ) on the line) and
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the positive x axis. Then, if θ−α = π/2: that is, OP and the line is parallel
and P is the point at infinity, then we see that r = 0 by the division by zero
calculus; the point at infinity is represented by zero and we can consider that
the line passes the origin, however, it is in a discontinuous way.

H

l

O

α

(r, θ)

d

θ

l′(?)

Figure 9.

This will mean simply that any line arrives at the point at infinity and
the point is represented by zero and so, for the line we can add the point at
the origin. In this sense, we can add the origin to any line as the point of the
compactification of the line. This surprising new property may be looked in
our mathematics grobally.

The distance d from the origin to the line determined by the two planes

Πk : akx+ bky + ckz = 1, k = 1, 2, (6.9)

is given by

d =

√
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

(b1c2 − b2c1)2 + (c1a2 − c2a1)2 + (a1b2 − a2b1)2
. (6.10)

If the two planes are coincident, then d = 0. Further, if the two planes
are parallel, by the division by zero, d = 0. This will mean that any plane
contains the origin as in a line.
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6.3 Tangential lines and tan π
2 = 0

We looked the very fundamental and important formula tan π
2
= 0 in Section

5. In this subsection, for its importance we will furthermore see its various
geometrical meanings.

We consider the high tan θ
(
0 ≤ θ ≤ π

2

)
that is given by the common point

of two lines y = (tan θ)x and x = 1 on the (x, y) plane. Then,

tan θ −→ ∞; θ −→ π

2
.

However,

tan
π

2
= 0,

by the division by zero. The result will show that, when θ = π/2, two lines
y = (tan θ)x and x = 1 do not have a common point, because they are
parallel in the usual sense. However, in the sense of the division by zero,
parallel lines have the common point (0, 0). Therefore, we can see the result
tan π

2
= 0 following our new space idea.

x

y

O

−∞ ∞

y = mx

Figure 10.

x

y

O

θ

tan θ

1

Figure 11.
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x

Figure 12.

We consider general lines represented by

ax+ by + c = 0, a′x+ b′y + c′ = 0. (6.11)

The gradients are given by

k = −a

b
, k′ = −a′

b′
, (6.12)

respectively. In particular, note that if b = 0, then k = 0, by the division by
zero.

If kk′ = −1, then the lines are orthogonal; that is,

tan
π

2
= 0 = ± k − k′

1 + kk′ , (6.13)

which shows that the division by zero 1/0 = 0 and orthogonality meets in a
very good way.

Furthermore, even in the case of polar coordinates x = r cos θ, y = r sin θ,
we can see the division by zero

tan
π

2
=

y

0
= 0. (6.14)
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In particular, note that:
From the expansion

tan z = −
+∞∑

ν=−∞

(
1

z − (2ν − 1)π/2
+

1

(2ν − 1)π/2

)
, (6.15)

tan
π

2
= 0.

The division by zero may be looked even in the rotation of the coordinates.
We will consider a 2 dimensional curve

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0 (6.16)

and a rotation defined by

x = X cos θ − Y sin θ, y = X sin θ + Y cos θ. (6.17)

Then, we write, by inserting these (x, y)

AX2 + 2HXY +BY 2 + 2GX + 2FY + C = 0. (6.18)

Then,

H = 0 ⇐⇒ tan 2θ =
2h

a− b
. (6.19)

If a = b, then, by the division by zero,

tan
π

2
= 0, θ =

π

4
. (6.20)

For h2 > ab, the equation

ax2 + 2hxy + by2 = 0 (6.21)

represents 2 lines and the angle θ made by two lines is given by

tan θ = ±2
√
h2 − ab

a+ b
. (6.22)
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If h2 − ab = 0, then, of course, θ = 0. If a + b = 0, then, by the division by
zero, θ = π/2 from tan θ = 0.

For a hyperbolic function

x2

a2
− y2

b2
= 1 a, b > 0 (6.23)

the angle θ maden by the two asymptotic lines y = ±(b/a)x is given by

tan θ =
2(b/a)

1− (b/a)2
. (6.24)

If a = b, then θ = π/2 from tan θ = 0.
We consider the unit circle with center at the origin on the (x, y) plane.

We consider the tangential line for the unit circle at the point that is the
common point of the unit circle and the line y = (tan θ)x

(
0 ≤ θ ≤ π

2

)
. Then,

the distance Rθ between the common point and the common point of the
tangential line and x-axis is given by

Rθ = tan θ.

Then,
R0 = tan 0 = 0,

and
tan θ −→ ∞; θ −→ π

2
.

However,

Rπ/2 = tan
π

2
= 0.

This example shows also that by the stereoprojection mapping of the unit
sphere with center the origin (0, 0, 0) onto the plane, the north pole corre-
sponds to the origin (0, 0).
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Figure 13.

In this case, we consider the orthogonal circle CRθ
with the unit circle

through at the common point and the symmetric point with respect to the
x-axis with center ((cos θ)−1, 0). Then, the circle CRθ

is as follows:
CR0 is the point (1, 0) with curvature zero, and CRπ/2

(that is, when
Rθ = ∞, in the common sense) is the y-axis and its curvature is also zero.
Meanwhile, by the division by zero, for θ = π/2 we have the same result,
because (cos(π/2))−1 = 0.

Note that from the expansion

1

cos z
= 1 +

+∞∑
ν=−∞

(−1)ν
(

1

z − (2ν − 1)π/2
+

2

(2ν − 1)π

)
, (6.25)

(
1

cos z

)(π
2

)
= 1− 4

π

∞∑
ν=0

(−1)ν

2ν + 1
= 0.

The point (cos θ, 0) and ((cos θ)−1, 0) are the symmetric points with respec-
tive to the unit circle, and the origin corresponds to the origin.

In particular, the formal calculation√
1 +R2

π/2 = 1 (6.26)
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is not good. The identity cos2 θ + sin2 θ = 1 is valid always, however 1 +
tan2 θ = (cos θ)−2 is not valid for θ = π/2.

1

Rθ =
1

cos θ

y

O x

θ

Figure 14.

Note that from the expansin

1

cos2 z
=

+∞∑
ν=−∞

1

(z − (2ν − 1)π/2)2
, (6.27)

(
1

cos2 z

)(π
2

)
=

2

π2

∞∑
ν=1

1

ν2
=

1

3
.

On the point (p, q)(0 ≤ p, q ≤ 1) on the unit circle, we consider the
tangential line Lp,q of the unit circle. Then, the common points of the line
Lp,q with x-axis and y-axis are (1/p, 0) and (0, 1/q), respectively. Then, the
area Sp of the triangle formed by the three points (0, 0), (1/p, 0) and (0, 1/q)
is given by

Sp =
1

2pq
.

Then,
p −→ 0; Sp −→ +∞,

however,
S0 = 0
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(H. Michiwaki: 2015.12.5.).
We denote the point on the unit circle on the (x, y) with (cos θ, sin θ)

for the angle θ with the positive real line. Then, the tangential line of the
unit circle at the point meets at the point (Rθ, 0) for Rθ = [cos θ]−1 with the
x-axis for the case θ ̸= π/2. Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞, (6.28)

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞, (6.29)

however,

Rπ/2 =
[
cos
(π
2

)]−1

= 0, (6.30)

by the division by zero. We can see the strong discontinuity of the point
(Rθ, 0) at θ = π/2 (H. Michiwaki: 2015.12.5.).

θ

y

O

R
x

Figure 15.

The line through the points (0, 1) and (cos θ, sin θ) meets the x axis with
the point (Rθ, 0) for the case θ ̸= π/2 by

Rθ =
cos θ

1− sin θ
. (6.31)
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Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞, (6.32)

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞, (6.33)

however,
Rπ/2 = 0, (6.34)

by the division by zero. We can see the strong discontinuity of the point
(Rθ, 0) at θ = π/2.

Note also that [
1− sin

(π
2

)]−1

= 0.

For the parabolic equation y2 = 4ax, a > 0, at a point (x, y), the normal
line shadow on the x-axis is given by

|yy′| = 2a. (6.35)

At the origin, we have, from y′(0) = 0,

|yy′| = 0. (6.36)

6.4 Two Circles

We consider two circles with radii a, b > 0 with centers (a, 0) and (−b, 0),
respectively. Then, the external common tangent La,b (we assume that a < b)
meets the x-axis in point (Ra, 0) which is given by, by fixing b

Ra =
2ab

b− a
. (6.37)

We consider the circle CRa with center at (Ra, 0) with radius Ra (see Figure
15). Then,

a → b =⇒ Ra → ∞,

however, when a = b, then we have Rb = −2b by the division by zero, from
the identity

2ab

b− a
= −2b− 2b2

a− b
.
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R =
2ab

b− a

a
b

y

O x

Figure 16.

Meanwhile, when we interpret (6.37) as

Ra =
−1

a− b
· 2ab,

we have, for a = b, Rb = 0. It means that the circle CRb
is the y axis with

curvature zero through the origin (0, 0).
The above formulas will show strong discontinuity for the change of the

a and b from a = b (H. Okumura: 2015.10.29.).

We denote the circles Sj:

(x− aj)
2 + (y − bj)

2 = r2j .

Then, the common point (X,Y ) of the co- and exterior tangential lines of
the circles Sj for j = 1, 2,

(X,Y ) =

(
r1a2 − r2a1
r1 − r2

,
r1b2 − r2b1
r1 − r2

)
.

We will fix the circle S2. Then, from the expansion

r1a2 − r2a1
r1 − r2

=
r2(a2 − a1)

r1 − r2
+ a2 (6.38)
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for r1 = r2, by the division by zero, we have

(X,Y ) = (a2, b2).

Meanwhile, when we interpret (6.38) as

r1a2 − r2a1
r1 − r2

=
1

r1 − r2
· (r1a2 − r2a1),

we obtain that
(X,Y ) = (0, 0),

that is reasonable. However, the both cases, the results show strong discon-
tinuity.

6.5 Circles and curvature - an interpretation of the
division by zero r/0 = 0

We consider a solid body called right circular cone whose bottom is a disc
with radius r2. We cut the body with a disc of radius r1(0 < r1 < r2) that is
parallel to the bottom disc. We denote the distance by d between the both
discs and R the distance between the top point of the cone and the bottom
circle on the surface of the cone. Then, R is calculated by Eko Michiwachi
(8 years old daughter of Mr. H. Michiwaki ) as follows:

R =
r2

r2 − r1

√
d2 + (r2 − r1)2,

that is called EM radius, because by the rotation of the cone on the plane, the
bottom circle writes the circle of radius R. We denote by K = K(R) = 1/R
the curvature of the circle with radius R. We fix the distance d. Now note
that:

r1 → r2 =⇒ R → ∞.

This will be natural in the sense that when r1 = r2, the circle with radius R
becomes a line.

R =
r2

r2 − r1

√
d2 + (r2 − r1)2

d
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Figure 17.

However, the division by zero will mean that when r1 = r2, the above
EM radius formula makes sense and R = 0. What does it mean? Here, note
that, however, then the curvature K = K(0) = 0 by the division by zero;
that is, the circle with radius R becomes a line, similarly. The curvature of
a point (circle of radius zero) is zero.

6.6 Newton’s method

The Newton’s method is fundamental when we look for the solutions for some
general equation f(x) = 0 numerically and practically. We will refer to its
prototype case.

We will assume that a function y = f(x) belongs to C1 class. We consider
the sequence {xn} for n = 0, 1, 2, . . . , n, . . . , defined by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . . (6.39)

When f(xn) = 0, we have
xn+1 = xn, (6.40)

in the reasonable way. Even the case f ′(xn) = 0, we have also the reasonable
result (6.46), by the division by zero.

x2 x1 x0 ?

y = f(x)
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Figure 18.

x x∗

y = f(x)

Figure 19.

6.7 Cauchy’s mean value theorem

For the Cauchy mean value theorem: for f, g ∈ Differ(a, b), differentiable,
and ∈ C0[a, b], continuous and if g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0, then
there exists ξ ∈ (a, b) satisfying that

f(a)− f(b)

g(a)− g(b)
=

f ′(ξ)

g′(ξ)
, (6.41)

we do not need the assumptions g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0, by the
division by zero. Indeed, if g(a) = g(b), then, by the Rolle theorem, there
exists ξ ∈ (a, b) such that g′(ξ) = 0. Then, the both terms are zero and the
equality is valid.

For f, g ∈ C2[a, b], there exists a ξ ∈ (a, b) satisfying

f(b)− f(a)− (b− a)f ′(a)

g(b)− g(a)− (b− a)g′(a)
=

f ′′(a)

g′′(a)
.

Here, we do not need the assumption

g(b)− g(a)− (b− a)g′(a) ̸= 0,

by the division by zero.
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6.8 Length of tangential lines

We will consider a function y = f(x) of C1 class on the real line. We consider
the tangential line through (x, f(x))

Y = f ′(x)(X − x) + f(x). (6.42)

Then, the length (or distance) d(x) between the point (x, f(x)) and
(
x− f(x)

f ′(x)
, 0
)

is given by, for f ′(x) ̸= 0

d(x) = |f(x)|

√
1 +

1

f ′(x)2
. (6.43)

How will be the case f ′(x∗) = 0? Then, the division by zero shows that

d(x∗) = |f(x∗)|. (6.44)

Meanwhile, the x axis point (Xt, 0) of the tangential line at (x, y) and y
axis point (0, Yn) of the normal line at (x, y) are given by

Xt = x− f(x)

f ′(x)
(6.45)

and
Yn = y +

x

f ′(x)
, (6.46)

respectively. Then, if f ′(x) = 0, we obtain the reasonable results:

Xt = x, Yn = y. (6.47)
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c

Figure 20.

6.9 Curvature and center of curvature

We will assume that a function y = f(x) is of class C2. Then, the curvature
radius ρ and the center O(x, y) of the curvature at point (x, f(x)) are given
by

ρ(x, y) =
(1 + (y′)2)3/2

y′′
(6.48)

and

O(x, y) =

(
x− 1 + (y′)2

y′′
y′, y +

1 + (y′)2

y′′

)
, (6.49)

respectively. Then, if y′′ = 0, we have:

ρ(x, y) = 0 (6.50)

and
O(x, y) = (x, y), (6.51)

by the division by zero. They are reasonable.
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y = f(x)

(x, y)

Figure 21.

We will consider a curve r = r(s), s = s(t) of class C2. Then,

v =
dr

dt
, t =

dr(s)

ds
, v =

ds

dt
,
dt(s)

ds
=

1

ρ
n,

by the principal normal unit vector n. Then, we see that

a =
dv

dt
=

dv

dt
t+

v2

ρ
n.

If ρ(s0) = 0, then

a(s0) =

[
dv

dt
t

]
s=s0

(6.52)

and [
v2

ρ

]
s=s0

= ∞ (6.53)

will be funny. It will be the zero.

6.10 n = 2, 1, 0 regular polygons inscribed in a disc

We consider n regular polygons inscribed in a fixed disc with radius a. Then
we note that their area Sn and the lengths Ln of the sum of the sides are
given by

Sn =
na2

2
sin

2π

n
(6.54)
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and
Ln = 2na sin

π

n
, (6.55)

respectively (see Figure 21). For n ≥ 3, the results are clear.

a

s
π
n

2π
n

Figure 22.

For n = 2, we will consider two diameters that are the same. We can con-
sider it as a generalized regular polygon inscribed in the disc as a degenerate
case. Then, S2 = 0 and L2 = 4a, and the general formulas are valid.

Next, we will consider the case n = 1. Then the corresponding regular
polygon is a just diameter of the disc. Then, S1 = 0 and L1 = 0 that will
mean that any regular polygon inscribed in the disc may not be formed and
so its area and length of the side are zero.

For a n = 1 triangle, if 1 means one side, then we can interpretate as in
the above, however, if we consider 1 as one vertex, the above situation may
be consider as one point on the circle which coincides with Sl = Ll = 0.

Now we will consider the case n = 0. Then, by the division by zero
calculus, we obtain that S0 = πa2 and L0 = 2πa. Note that they are the area
and the length of the disc. How to understand the results? Imagine contrary
n tending to infinity, then the corresponding regular polygons inscribed in
the disc tend to the disc. Recall our new idea that the point at infinity is
represented by 0. Therefore, the results say that n = 0 regular polygons are
n = ∞ regular polygons inscribed in the disc in a sense and they are the
disc. This is our interpretation of the theorem:
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Theorem. n = 0 regular polygons inscribed in a disc are the whole disc.

In addition, note that each inner angle An of a general n regular polygon
inscribed in a fixed disc with radius a is given by

An =

(
1− 2

n

)
π. (6.56)

The circumstances are similar for n regular polygons circumscribed in the
disc, because the corresponding data are given by

Sn = na2 tan
π

n
(6.57)

and
Ln = 2na tan

π

n
, (6.58)

and (6.63), respectively.

6.11 Our life figure

As an interesting figure which shows an interesting relation between 0 and
infinity, we will consider a sector ∆α on the complex z = x+ iy plane

∆α =
{
| arg z| < α; 0 < α <

π

2

}
.

We will consider a disc inscribed in the sector ∆α whose center (k, 0) with
radius r. Then, we have

r = k sinα. (6.59)

Then, note that as k tends to zero, r tends to zero, meanwhile k tends to
+∞, r tends to +∞. However, by our division by zero calculus, we see that
immediately that

[r]r=∞ = 0. (6.60)

θ

k

r

Figure 23: θ: const, r → ∞
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On the sector, we see that from the origin as the point 0, the inscribed
discs are increasing endlessly, however their final disc reduces to the origin
suddenly - it seems that the whole process looks like our life in the viewpoint
of our initial and final.

6.12 H. Okumura’s example

The suprising example by H. Okumura will show a new phenomenon at the
point at infinity.

On the sector ∆α, we shall change the angle and we consider a fixed circle
Ca, a > 0 with radius a inscribed in the sectors. We see that when the circle
tends to +∞, the angles α tend to zero. How will be the case α = 0? Then,
we will not be able to see the position of the circle. Surprisingly enough,
then Ca is the circle with center at the origin 0. This result is derived from
the division by zero calculus for the formula

k =
a

sinα
. (6.61)

The two lines arg z = α and arg z = −α were tangential lines of the circle
Ca and now they are the positive real line. The gradient of the positive real
line is of course zero. Note here that the gradient of the positive imaginary
line is zero by the division by zero calculus that means tan π

2
= 0. Therefore,

we can understand that the positive real line is still a tangential line of the
circle Ca.
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Figure 24.

This will show some great relation between zero and infinity. We can see
some mysterious property around the point at infinity.

6.13 Interpretation by analytic geometry

For a function
S(x, y) = a(x2 + y2) + 2gx+ 2fy + c, (6.62)

the radius R of the circle S(x, y) = 0 is given by

R =

√
g2 + f 2 − ac

a2
. (6.63)

If a = 0, then the area πR2 of the disc is zero, by the division by zero; that
is, the circle is a line (degenerate).

The center of the circle (6.68) is given by(
−g

a
,−f

a

)
. (6.64)

Therefore, the center of a general line

2gx+ 2fy + c = 0 (6.65)
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may be considered as the origin (0, 0), by the division by zero.

We consider the functions

Sj(x, y) = aj(x
2 + y2) + 2gjx+ 2fjy + cj. (6.66)

The distance d of the centers of the circles S1(x, y) = 0 and S2(x, y) = 0 is
given by

d2 =
g21 + f 2

1

a21
− 2

g1g2 + f1f2
a1a2

+
g22 + f 2

2

a22
. (6.67)

If a1 = 0, then by the division by zero

d2 =
g22 + f 2

2

a22
. (6.68)

Then, S1(x, y) = 0 is a line and its center is the origin (0, 0). Therefore, the
result is very reasonable.

d

a

Figure 25.

Meanwhile, the identity cos2 θ + sin2 θ = 1 is valid always, however 1 +
tan2 θ = (cos θ)−2 is not valid for θ = π/2, in the sense of the division by zero,
because we consider the formula at θ = π/2, with not the limiting values.
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7 Mirror image with respect to a circle

For simplicity, we will consider the unit circle |z| = 1 on the complex z =
x+ iy plane. Then, we have the reflection formula

z∗ =
1

z
(7.1)

for any point z, as well-known ([2]). For the reflection point z∗, there is no
problem for the points z ̸= 0,∞. As the classical result, the reflection of
zero is the point at infinity and conversely, for the point at infinity we have
the zero point. The reflection is a one to one and onto mapping between the
inside and the outside of the unit circle, by considering the point at infinity.

Are these correspondences, however, suitable? Does there exist the point
at ∞, really? Is the point at infinity corresponding to the zero point, by the
reflection? Is the point at ∞ reasonable from the practical point of view?
Indeed, where can we find the point at infinity? Of course, we know plesantly
the point at infinity on the Riemann sphere, however, on the complex z-plane
it seems that we can not find the corresponding point. When we approach to
the origin on a radial line, it seems that the correspondence reflection points
approach to the point at infinity with the direction (on the radial line).

On the concept of the division by zero, there is no the point at infinity
∞ as the numbers. For any point z such that |z| > 1, there exists the unique
point z∗ by (9.1). Meanwhile, for any point z such that |z| < 1 except z = 0,
there exits the unique point z∗ by (9.1). Here, note that for z = 0, by the
division by zero, z∗ = 0. Furthermore, we can see that

lim
z→0

z∗ = ∞, (7.2)

however, for z = 0 itself, by the division by zero, we have z∗ = 0. This
will mean a strong discontinuity of the functions W = 1

z
and (9.1) at the

origin z = 0; that is a typical property of the division by zero. This strong
discontinuity may be looked in the above reflection property, physically.
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Figure 26.

The result is a surprising one in a sense; indeed, by considering the ge-
ometrical corresponding of the mirror image, we will consider the center
corresponds to the point at infinity that is represented by the origin z = 0.
This will show that the mirror image is not followed by this concept; the cor-
responding seems to come from the concept of one-to-one and onto mapping.

Should we exclude the point at infinity, from the numbers? We
were able to look the strong discontinuity of the division by zero in the re-
flection with respect to circles, physically ( geometrical optics ). The division
by zero gives a one to one and onto mapping of the reflection (9.1) from the
whole complex plane onto the whole complex plane.

The infinity ∞ may be considered as in (9.2) as the usual sense
of limits, however, the infinity ∞ is not a definite number.

On the x, y plane, we shall consider the inversion relation with respect to
the circle with radius R and with center at the origin:

x′ =
xR2

x2 + y2
, y′ =

yR2

x2 + y2
. (7.3)

Then, the line
ax+ by + c = 0 (7.4)

is transformed to the line

R2(ax′ + by′) + c((x′)2 + (y′)2) = 0. (7.5)

58



In particular, for c = 0, the line ax + by = 0 is transformed to the line
ax′ + by′ = 0. This corresponding is one-to-one and onto, and so the origin
(0, 0) have to correspond to the origin (0, 0).

For the elliptic curve

x2

a2
+

y2

b2
= 1, a, b > 0 (7.6)

and for the similar correspondences

x′ =
a2b2x

b2x2 + a2y2
, y′ =

a2b2y2

b2x2 + a2y2
. (7.7)

the origin corresponds to itself.
The pole (x1, y1) of the line

ax+ by + c = 0 (7.8)

with respect to a circle with radius R with center (x0, y0) is given by

x1 = x0 −
aR2

ax0 + by0 + c
(7.9)

and

y1 = y0 −
bR2

ax0 + by0 + c
. (7.10)

If ax0 + by0 + c = 0, then we have (x1, y1) = (x0, y0).
Furthermore, for various higher dimensional cases the results are similar.
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8 Stereographic projection

For a great meaning and importance, we will see that the point at infinity is
represented by zero.

8.1 The point at infinity is represented by zero

By considering the stereographic projection, we will be able to see that the
point at infinity is represented by zero.

Consider the sphere (ξ, η, ζ) with radius 1/2 put on the complex z = x+iy
plane with center (0, 0, 1/2). From the north pole N(0, 0, 1), we consider
the stereographic projection of the point P (ξ, η, ζ) on the sphere onto the
complex z(= x+ iy) plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
. (8.1)

If ζ = 1, then, by the division by zero, the north pole corresponds to the
origin (0, 0) = 0.

Here, note that

x2 + y2 =
ζ

1− ζ
.

For ζ = 1, we should consider as 1/0 = 0, not by the division by zero calculus,

ζ

1− ζ
= −1− 1

ζ − 1
.

We will consider the unit sphere {(x1, x2, x3);x
2
1+x2

2+x2
3 = 1}. From the

north pole N(0, 0, 1), we consider the stereographic projection of the point
P (x1, x2, x3) on the sphere onto the (x, y) plane; that is,

(x1, x2, x3) = (8.2)(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1− 1/(x2 + y2)

1 + 1/(x2 + y2)

)
.

Then, we see that the north pole corresponds to the origin.
Next, we will consider the semi-sphere (ξ, η, ζ) with center C(0, 0, 1) on

the origin on the (x, y) plane. From the center C(0, 0, 1), we consider the
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stereographic projection of the point P (ξ, η, ζ) on the semi- sphere onto the
complex (x, y) plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
. (8.3)

If ζ = 1, then, by the division by zero, the center C corresponds to the origin
(0, 0).

Meanwhile, we will consider the mapping from the open unit disc onto
R2 in one to one and onto

ξ =
x
√

x2 + y2

1 + x2 + y2
, η =

y
√

x2 + y2

1 + x2 + y2

or

x =
ξ√

ρ(1− ρ)
, y =

η√
ρ(1− ρ)

; ρ2 = ξ2 + η2.

Note that the point (x, y) = (0, 0) corresponds to ρ = 0; (ξ, η) = (0, 0) and
ρ = 1.

8.2 A contradiction of classical idea for 1/0 = ∞
The infinity ∞ may be considered by the idea of the limiting, however, we
had considered it as a number, for sometimes, typically, the point at infinity
was represented by ∞ for some long years. For this fact, we will show a
formal contradiction.

We will consider the stereographic projection by means of the unit sphere

ξ2 + η2 +

(
ζ − 1

2

)2

= 1

from the complex z = x + iy plane onto the sphere. Then, we obtain the
correspondences

x =
ξ

1− ζ
, y =

η

1− ζ

and

ξ =
1

2

z + z

zz + 1
, η =

1

2i

z − z

zz + 1
, ζ =

zz

zz + 1
.

In general, two points P andQ1 on the diameter of the unit sphere correspond
to z and z1, respectively if and only if

zz1 + 1 = 0. (8.4)

61



Meanwhile, two points P and Q2 on the symmetric points on the unit sphere
with respect to the plane ζ = 1

2
correspond to z and z2, respectively if and

only if
zz2 − 1 = 0. (8.5)

If the point P is the origin or the north pole, then the points Q1 and Q2

are the same point. Then, the identities (10.4) and (10.5) are not valid that
show a contradiction.

Meanwhile, if we write (10.4) and (10.5)

z = − 1

z1
(8.6)

and

z =
1

z2
, (8.7)

respectively, we see that the division by zero (1.2) is valid.

8.3 Natural meanings of 1/0 = 0

For constants a and b satisfying

1

a
+

1

b
= k, ( ̸= 0, const.)

the function
x

a
+

y

b
= 1

passes the point (1/k, 1/k). If a = 0, then, by the division by zero, b = 1/k
and y = 1/k; this result is natural.
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Figure 27.

We will consider the line y = m(x−a)+b through a fixed point (a, b); a, b >
0 with gradientm. We setA(0,−am+b) andB(a−(b/m), 0) that are common
points with the line and both lines x = 0 and y = 0, respectively. Then,

AB
2
= (−am+ b)2 +

(
a− b

m

)2

.

If m = 0, then A(0, b) and B(a, 0), by the division by zero, and furthermore

AB
2
= a2 + b2.

Then, the line AB is a corresponding to the line between the origin and the
point (a, b). Note that this line has only one common point with the both
lines x = 0 and y = 0. Therefore, this result will be very natural in a sense.
– Indeed, we can understand that the line AB is broken as the two lines
(0, b)− (a, b) and (a, b)− (a, 0), suddenly.

The general line equation with gradient m is given by, with a constant b

y = m(x− a) + b (8.8)
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or
y

m
= x− a+

b

m
. (8.9)

By m = 0, we obtain the equation x = a, by the division by zero. This
equation may be considered the cases m = ∞ and m = −∞, and these cases
may be considered by the strictly right logic with the division by zero.

By the division by zero, we can consider the equation (10.8) as a general
line equation.

In the Lami’s formula for three vectors A,B,C satisfying

A+B+C = 0, (8.10)

∥A∥
sinα

=
∥B∥
sin β

=
∥C∥
sin γ

, (8.11)

if α = 0, then we obtain:

∥A∥
0

=
∥B∥
0

=
∥C∥
0

= 0, (8.12)

Here, of course, α is the angle of B and C, β is the angle of C and A, and
γ is the angle of A and B,

α

β

γ

A

B

C

64



Figure 28.

For the Newton’s formula; that is, for a C2 class function y = f(x), the
curvature K at the origin is given by

K = lim
x→0

∣∣∣∣x2

2y

∣∣∣∣ = ∣∣∣∣ 1

f ′′(0)

∣∣∣∣ , (8.13)

we have: for f ′′(0) = 0,

K =
1

0
= 0. (8.14)

8.4 Double natures of the zero point z = 0

Any line on the complex plane arrives at the point at infinity and the point at
infinity is represented by zero. That is, a line is, indeed, contains the origin;
the true line should be considered as the sum of a usual line and the origin.
We can say that it is a compactification of the line and the compacted point
is the point at infinity, however, it it is represented by z = 0. Later, we will
see this property by analytic geometry and the division by zero calculus in
many situations.

However, for the general line equation

ax+ by + c = 0, (8.15)

by using the polar coordinates x = r cos θ, y = r sin θ, we have

r =
−c

a cos θ + b sin θ
. (8.16)

When a cos θ+ b sin θ = 0, by the division by zero, we have r = 0; that is, we
can consider that the line contains the origin.

The envelop of the linear lines represented by, for constants m and a fixed
constant p > 0,

y = mx+
p

m
, (8.17)

we have the function, by using an elementary ordinary differential equation,

y2 = 4px. (8.18)
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The origin of this parabolic function is missing from the envelop of the linear
functions, because the linear equations do not contain the y axis as the
tangential line of the parabolic function. Now recall that, by the division by
zero, as the linear equation for m = 0, we have the function y = 0, the x
axis. Note that both the x axis y = 0 and the parabolic function have the
zero gradient at the origin; that will mean that in the reasonable sense the x
axis is a tangential line of the parabolic function. Anyhow, by the division
by zero, the envelop of the linear functions may be considered as the whole
parabolic function containing the origin.

When we consider the limiting of the linear equations as m → 0, we will
think that the limit function is a parallel line to the x axis through the point
at infinity. Since the point at infinity is represented by zero, it will become
the x axis.

Meanwhile, when we consider the limiting function as m → ∞, we have
the y axis x = 0 and this function is an ordinally tangential line of the
parabolic function. From these two tangential lines, we see that the origin
has double natures; one is the continuous tangential line x = 0 and the
second is the discontinuous tangential line y = 0.

In addition, note that the tangential point of (10.18) for the line (10.17)
is given by (

p

m
,
2p

m

)
(8.19)

and it is (0, 0) for m = 0.
We can see the point at infinity is reflected to the origin; and so, the origin

has the double natures; one is the native origin and another is reflected to
the origin of the point at infinity.
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9 Interesting examples in the division by zero

We will give interesting examples in the division by zero. Indeed, the divi-
sion by zero may be looked in the elementary mathematics and also in the
universe.

• For the line
x

a
+

y

b
= 1, (9.1)

if a = 0, then by the division by zero, we have the line y = b. This is a
very interesting property creating new phenomena at the term x/a for
a = 0.

Note that here we can not consider the case a = b = 0.

• For the area S(a, b) = ab of the rectangle with sides of lengths a, b, we
have

a =
S(a, b)

b
(9.2)

and for b = 0, formally

a =
0

0
. (9.3)

However, there exists a contradiction. S(a, b) depends on b and by the
division by zero calculus, we have, for the case b = 0, the right result

S(a, b)

b
= a. (9.4)

• For the identity

(a2 + b2)(a2 − b2) = c2(a2 − b2); a, b, c > 0 (9.5)

if a ̸= b, then we have the Pythagorean theorem

a2 + b2 = c2. (9.6)

However, for the case a = b, we have also the Pythagorean theorem,
by the division by zero calculus

2a2 = c2. (9.7)
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• We consider 4 lines

a1x+ b1y + c1 = 0,

a1x+ b1y + c′1 = 0,

a2x+ b2y + c2 = 0,

a2x+ b2y + c′2 = 0,

(9.8)

Then, the area S surrounded by these lines is given by the formula

S =
|c1 − c′1| · |c1 − c′1|

|a1b2 − a2b1|
. (9.9)

Of course, if |a1b2 − a2b1| = 0, then S = 0.

• 1
sin 0

= 1
cosπ/2

= 0. Consider the linear equation with a fixed positive

constant a
x

a cos θ
+

y

a sin θ
= 1. (9.10)

Then, the results are clear from the graphic meanings.

• For the tangential line at a point (a cos θ, sin θ) on the elliptic curve

x2

a2
+

y2

b2
= 1, a, b > 0 (9.11)

we have Q(a/(cos θ), 0) and R(0, b/(sin θ)) as the common points with
x and y axisis, respectively. if θ = 0, then Q(a, 0) and R(0, 0). If
θ = π/2, then Q(0, 0) and R(0, b).

• For the tangential line at the point (a cos θ, sin θ) on the elliptic curve,
we shall consider the area S(θ) of the triangle formed by this line and
x, y axises

S(θ) =
ab

| sin θ|
.

Then, by the division by zero calculus, we have S(0) = 0.

• The common point of B (resp. B′) of a tangential line (7.10) and the
line x = a (resp. x = −a) is given by

B

(
a,

b(1− cos θ)

sin θ

)
.
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(resp.

B′
(
−a,

b(1 + cos θ)

sin θ

)
.

) The circle with diameter BB′ is given by

x2 + y2 − 2b

sin θ
y − (a2 − b2) = 0.

Note that this circle passes two forcus points of the elliptic curve. Note
that for θ = 0, we have the reasonable result, by the division by zero
calculus

x2 + y2 − (a2 − b2) = 0.

In the classical theory for quadratic curves, we have to arrange globally
it by the division by zero calculus.

• The area S(x) surrounded by two x, y axises and the line passing a
fixed point (a, b), a, b > 0 and a point (x, 0) is given by

S(x) =
bx2

2(x− a)
. (9.12)

For x = a, we obtain, by the division by zero calculus, the very inter-
esting value

S(a) = ab. (9.13)
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(a, b)

(x, 0)

Figure 29.

• For example, for fixed point (a, b); a, b > 0 and fixed a line y = (tan θ)x, 0 <
θ < π, we will consider the line L(x) passing the two points (a, b) and
(x, 0). Then, the area S(x) of the triangle surround by the three lines
y = (tan θ)x, L(x) and the x axis is given by

S(x) =
b

2

x2

x− (a− b cot θ)
.

For the case x = a− b cot θ, by the division by zero calculus, we have

S(a− b cot θ) = b(a− b cot θ).

Note that this is the area of the parallelogram through the origin and
the point (a, b) formed by the lines y = (tan θ)x and the x axis.
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b (a, b)

S(x)

y = (tan θ)x

θ

a− b cot θ

Figure 30.

• We consider an equilateral triangle with vertices (±a/2,
√
3a/2) and the

origin. The area S(h) of the triangle surrounded by the three lines that
the line through (0, h +

√
3a/2) and (−a/2,

√
3a/2), the line through

(0, h+
√
3a/2) and (a/2,

√
3a/2) and the x- axis is given by .

S(h) =

(
h+ (

√
3/2)a

)2
2h

. (9.14)

Then, by the division by zero calculus, we have, for h = 0,

S(0) =

√
3

2
a2.
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h

O

a

S(x)

Figure 31.

• Similarly, we will consider the cone formed by the rotation of the line

kx

a(k + h)
+

y

k + h
= 1

and the x, y plane with center the z- axis (a, h > 0, and a, h are fixed).
Then, the volume V (x) is given by

V (k) =
π

3

a2(k + h)3

k2
.

Then, by the division by calculus, we have the reasonable value

V (0) = πa2h.

• For example, for the plane equation

x

a
+

y

b
+

z

c
= 1, (9.15)

for a = 0, we can consider the line naturally, by the division by zero

y

b
+

z

c
= 1. (9.16)

• As in the line case, in the hyperbolic curve

x2

a2
− y2

b2
= 1, a, b > 0, (9.17)
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by the representations by parameters

x =
a

cos θ
=

a

2

(
1

t
+ t

)
and

y =
b

tan θ
=

b

2

(
1

t
− t

)
the origin (0, 0) may be included as the point of the hyperbolic curve,
as we see from the cases θ = π/2 = 0 and t = 0.

In addition, from the fact, we will be able to understand that the
asymptotic lines are the tangential lines of the hyperbolic curve.

The two tangential lines of (7.17) with gradient m is given by

y = mx±
√
a2m2 − b2 (9.18)

and the gradients of the asymptotic lines are

m = ± b

a
. (9.19)

Then, we have asymptotic lines y = ± b
a
x as tangential lines in (7.17).

The common points of (7.17) and (7.18) are given by(
± a2m√

a2m2 − b2
,± b2m√

a2m2 − b2

)
. (9.20)

For the case a2m2 − b2 = 0, we have they are (0, 0).

• We fix a circle
x2 + (y − a)2 = a2, a > 0. (9.21)

At the point (2a+ d, 0), d > 0, we consider two tangential lines for the
circle. Let 2θ is the angle between two tangential lines at the point
(2a+d, 0), Then, the area S(h) = S(θ) and the length L(x) = L(θ) are
given by

S(h) = S(θ) =
a√
h
(h+ 2a)

3
2 (9.22)

=
a2

cos θ

(
sin θ + 2 +

1

sin θ

)
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and
L(h) = L(θ) =

a√
h

√
h+ 2a (9.23)

= a

(
1

cos θ
+ tan θ

)
,

respectively. For h = 0 and θ = 0, by diivision by zero calculus, we see
that all are zero.

• We consider two spheres defined by

x2 + y2 + z2 + 2aj + 2bj + 2cj + 2dj = 0, j = 1, 2. (9.24)

Then, the angle θ by two spheres is given by

cos θ =
a1a2 + b1b2 + c1c2 − (d1 + d2)√

a21 + b21 + c21 − 2d1
√

a22 + b22 + c22 − 2d2
. (9.25)

If cos θ = 0, then, two spheres are orthogonal or one sphere is a point
sphere.

• For the parabolic equation

y2 = 4px,

two points (pt2, 2pt) and (qt2, 2qt) is a diameter is if and only if

(s− t){t(s+ t) + 2} = 0; s = −t− 2

t

and the diameter r is given by

r2 = p2(t− s)2{(t+ s)2 + 4}.

Here, we should consider the case t = s = 0 as r = 0 and

0 = −0− 2

0
,

and the x and y axises are the orthogonal two tangential lines of the
parabolic equation.
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10 Applications to Wasan geometry

We will introduce typical applications of the division by zero calculus to
Wasan geometry (traditional Japanese geometry), however, the results and
their impacts will create some new fields in mathematics.

10.1 Circle and line

We will consider the fixed circle x2 + (y − b)2 = b2, b > 0. For a touching
circle with this circle and the x axis is represented by

(x− 2
√
ab)2 + (y − a)2 = a2.

Then, we have
x2 + y2√

a
− 4

√
bx = 2

√
a(y − 2b)

and
x2 + y2

a
− 4

√
b

a
x = 2(y − 2b).

Then, by the division by zero, we have the reasonable results the origin, that
is the point circle of the origin, the y axis and the line y = 2b. (H. Okumura:
2017.10.13.).

10.2 Three touching cirlces exteriously

For real numbers z, and a, b > 0, the point (0, 2
√
ab/z) is denoted by Vz. H.

Okumura and M. Watanabe gave the theorem in [13]:

Theorem 7. The circle touching the circle α: (x−a)2+ y2 = a2 and the
circle β: (x+ b)2 + y2 = b2 at points different from the origin O and passing
through Vz±1 is represented by(

x− b− a

z2 − 1

)2

+

(
y − 2z

√
ab

z2 − 1

)2

=

(
a+ b

z2 − 1

)2

(10.1)

for a real number z ̸= ±1
The common external tangents of α and β can be expressed by the equa-

tions
(a− b)x∓ 2

√
aby + 2ab = 0. (10.2)

75



Following our concept of the division by zero calculus, we will consider the
case z2 = 1 for the singular points in the general parametric representation
of the touching circles.

10.2.1 Results

First, for z = 1 and z = −1, respectively by the division by zero calculus, we
have from (10.1), surprisingly

x2 +
b− a

2
x+ y2 ∓

√
aby − ab = 0, (10.3)

respectively [12].
Secondly, multiplying (10.1) by (z2 − 1), we immediately obtain surpris-

ingly (10.2) for z = 1 and z = −1, respectively by the division by zero
calculus.

In the usual way, when we consider the limiting z → ∞ for (10.1), we
obtain the trivial result of the point circle of the origin. However, the result
may be obtained by the division by zero calculus at w = 0 by setting w = 1/z.

10.2.2 On the circle appeared

Let ζ be the circle expressed by (10.3) with minus sign. Then ζ meets the
circles α in two points

Pa

(
2rA, 2rA

√
a

b

)
, Qa

(
2ab

9a+ b
,−6a

√
ab

9a+ b

)
,

where rA = ab/(a+ b) (see Figure 31). Also it meets β in points

Pb

(
−2rA, 2rA

√
b

a

)
, Qb

(
−2ab

a+ 9b
,−6b

√
ab

a+ 9b

)
.

The line PaPb is the external common tangent of the two circles α and β
on the upper half plane. The lines PaQa and PbQb intersect at the point

R :
(
0,−

√
ab
)
, which lies on the remaining external common tangent of

α and β. Furthermore, ζ is orthogonal to the circle with center R passing
through the origin.
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α
β

Pa

Pb

QaQb

R

ζ

O

Figure 32.

10.3 The Descartes circle theorem

We recall the famous and beautiful theorem ([5, 24]):

Theorem (Descartes) Let Ci (i = 1, 2, 3) be circles touching to each
other of radii ri. If a circle C4 touches the three circles, then its radius r4 is
given by

1

r4
=

1

r1
+

1

r2
+

1

r3
± 2

√
1

r1r2
+

1

r2r3
+

1

r3r1
. (10.4)

As well-known, circles and lines may be looked as the same ones in com-
plex analysis, in the sense of stereographic projection and many reasons.
Therefore, we will consider whether the theorem is valid for line cases and
point cases for circles. Here, we will discuss this problem clearly from the
division by zero viewpoint. The Descartes circle theorem is valid except for
one case for lines and points for the three circles and for one exception case,
we can obtain very interesting results, by the division by zero calculus.

We would like to consider all the cases for the Descartes theorem for lines
and point circles, step by step.

10.3.1 One line and two circles case

We consider the case in which the circle C3 is one of the external common
tangents of the circles C1 and C2. This is a typical case in this paper. We
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assume r1 ≥ r2. We now have r3 = 0 in (10.4). Hence

1

r4
=

1

r1
+

1

r2
+

1

0
± 2

√
1

r1r2
+

1

r2 · 0
+

1

0 · r1
=

1

r1
+

1

r2
± 2

√
1

r1r2
.

This implies
1

√
r4

=
1

√
r1

+
1

√
r2

in the plus sign case. The circle C4 is the incircle of the curvilinear triangle
made by C1, C2 and C3 (see Figure 32). In the minus sign case we have

1
√
r4

=
1

√
r2

− 1
√
r1
.

In this case C2 is the incircle of the curvilinear triangle made by the other
three (see Figure 33).

C1

C2

C4

C3

Figure 33.

C1

C4

C2

C3

Figure 34.

Of course, the result is known. The result was also well-known in Wasan
geometry [27] with the Descartes circle theorem itself.

10.3.2 Two lines and one circle case

In this case, the two lines have to be parallel, and so, this case is trivial,
because then other two circles are the same size circles, by the division by
zero 1/0 = 0.

10.3.3 One point circle and two circles case

This case is another typical case for the theorem. Intuitively, for r3 = 0, the
circle C3 is the common point of the circles C1 and C2. Then, there does not
exist any touching circle of the three circles Cj; j = 1, 2, 3.
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For the point circle C3, we will consider it by limiting of circles attaching
to the circles C1 and C2 to the common point. Then, we will examine the
circles C4 and the Descartes theorem.

In Theorem 7, by setting z = 1/w, we will consider the case w = 0; that
is, the case z = ∞ in the classical sense; that is, the circle C3 is reduced to
the origin.

We look for the circles C4 attaching with three circles Cj; j = 1, 2, 3. We
set

C4 : (x− x4)
2 + (y − y4)

2 = r24. (10.5)

Then, from the touching property we obtain:

x4 =
r1r2(r2 − r1)w

2

D
,

y4 =
2r1r2

(√
r1r2 + (r1 + r2)w

)
w

D

and

r4 =
r1r2(r1 + r2)w

2

D
,

where
D = r1r2 + 2

√
r1r2(r1 + r2)w + (r21 + r1r2 + r22)w

2.

By inserting these values to (10.5), we obtain

f0 + f1w + f2w
2 = 0,

where
f0 = r1r2(x

2 + y2),

f1 = 2
√
r1r2

(
(r1 + r2)(x

2 + y2)− 2r1r2y
)

and

f2 = (r21 + r1r2 + r22)(x
2 + y2) + 2r1r2(r2 − r1)x− 4(r1 + r2)y + 4r21r

2
2.

By using the division by zero calculus for w = 0, we obtain, for the first, for
w = 0, the second by setting w = 0 after dividing by w and for the third
case, by setting w = 0 after dividing by w2,

x2 + y2 = 0, (10.6)
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(r1 + r2)(x
2 + y2)− 2r1r2y = 0 (10.7)

and

(r21+r1r2+r22)(x
2+y2)+2r1r2(r2−r1)x−4r1r2(r1+r2)y+4r21r

2
2 = 0. (10.8)

Note that (10.7) is the red circle in Figure 34 and its radius is

r1r2
r1 + r2

(10.9)

and (10.8) is the green circle in Figure 34 whose radius is

r1r2(r1 + r2)

r21 + r1r2 + r22
.

C1

C2

Figure 35.

When the circle C3 is reduced to the origin, of course, the inscribed circle
C4 is reduced to the origin, then the Descartes theorem is not valid. However,
by the division by zero calculus, then the origin of C4 is changed suddenly
for the cases (10.6), (10.7) and (10.8), and for the circle (10.7), the Descartes
theorem is valid for r3 = 0, surprisingly.

Indeed, in (9.4) we set ξ =
√
r3, then (10.4) is as follows:

1

r4
=

1

r1
+

1

r2
+

1

ξ2
± 2

1

ξ

√
ξ2

r1r2
+

(
1

r1
+

1

r2

)
.

and so, by the division by zero calculus at ξ = 0, we have

1

r4
=

1

r1
+

1

r2
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which is (10.9). Note, in particular, that the division by zero calculus may
be applied in many ways and so, for the results obtained should be examined
some meanings. This circle (10.7) may be looked a circle touching the origin
and two circles C1 and C2, because by the division by zero calculus

tan
π

2
= 0,

that is a popular property.
Meanwhile, the circle (10.8) is the attaching circle with the circles C1, C2

and the beautiful circle with center ((r2−r1), 0) with radius r1+r2. The each
of the areas surrounded by the three cicles C1, C2 and the circle of radius
r1 + r2 is called an arbelos, and the circle (10.7) is the famous Bankoff circle
of the arbelos.

For r3 = −(r1 + r2), from the Descartes identity (10.4), we have (10.4).
That is, when we consider that the circle C3 is changed to the circle with
center ((r2 − r1), 0) with radius r1 + r2, the Descartes identity holds. Here,
the minus sign shows that the circles C1 and C2 touch C3 internally from the
inside of C3.

10.3.4 Two point circles and one circle case

This case is trivial, because, the exterior touching circle is coincident with
one circle.

10.3.5 Three points case and three lines case

In these cases we have rj = 0, j = 1, 2, 3 and the formula (10.4) shows that
r4 = 0. This statement is trivial in the general sense.

As the solution of the simplest equation

ax = b, (10.10)

we have x = 0 for a = 0, b ̸= 0 as the standard value, or the Moore-Penrose
generalized inverse. This will mean in a sense, the solution does not exist;
to solve the equation (10.10) is impossible. The zero will represent some
impossibility.

In the Descartes theorem, three lines and three points cases, we can un-
derstand that the attaching circle does not exist, or it is the point and so the
Descartes theorem is valid.
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10.4 Circles and a chord

We recall the following result of the old Japanese geometry [26, 24, 13] (see
Figure 35):

C

C1 C2

h

Figure 36.

Lemma 10. Assume that the circle C with radius r is divided by a chord
t into two arcs and let h be the distance from the midpoint of one of the arcs
to t. If two externally touching circles C1 and C2 with radii r1 and r2 also
touch the chord t and the other arc of the circle C internally, then h, r, r1
and r2 are related by

1

r1
+

1

r2
+

2

h
= 2

√
2r

r1r2h
.

We are interesting in the limit case r1 = 0 or r2 = 0.

10.4.1 Results

We introduce the coordinates in the following way: the bottom of the circle
C is the origin and tangential line at the origin of the circle C is the x axis
and the y axis is given as in the center of the circle C is (0, r). We denote
the centers of the circles Cj; j = 1, 2 by (xj, yj), then we have

y1 = h+ r1, y2 = h+ r2.
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Then, from the attaching conditions, we obtain the three equations:

(x2 − x1)
2 + (r1 − r2)

2 = (r1 + r2)
2,

x2
1 + (h− r + r1)

2 = (r − r1)
2

and
x2
2 + (h− r + r2)

2 = (r − r2)
2.

Solving the equations for x1, x2 and r2, we get four sets of the solutions. Let
h = 2r3, v = r − r1 − r3. Then two sets are:

x1 = ±2
√
r3v,

x2 = ±2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −

√
v)− (r1 + r3))

(r1 + r3)2
.

The other two sets are

x1 = ±2
√
r3v,

x2 = ∓2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +

√
v)− (r1 + r3))

(r1 + r3)2
.

We now consider the solution

x1 = 2
√
r3v,

x2 = 2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −

√
v)− (r1 + r3))

(r1 + r3)2
.

Then

(x− x2)
2 + (y − y2)

2 − r22 =
g0 + g1r1 + g2r

2
1 + g3

(r1 + r3)2
,

where
g0 = r23(x

2 + y(y − 4r3) + 4rr3),
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g1 = 2r3((x−
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

g2 = (x− 2
√
rr3)

2 + y2 − 2r3y,

and
g3 = 4r3

√
v(r1(

√
ry −

√
r3x)− r3

√
r3x).

We now consider another solution

x1 = 2
√
r3v,

x2 = −2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +

√
v)− (r1 + r3))

(r1 + r3)2
.

Then

(x− x2)
2 + (y − y2)

2 − r22 =
k0 + k1r1 + k2r

2
1 + k3

(r1 + r3)2
,

where
k0 = r23(x

2 + y(y − 4r3) + 4rr3),

k1 = 2r3((x+
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

k2 = (x+ 2
√
rr3)

2 + y2 − 2r3y,

and
k3 = −4r3

√
v(r1(

√
ry +

√
r3x) + r3

√
r3x).

We thus see that the circle C2 is represented by

(g0 + g3) + g1r1 + g2r
2
1 = 0

and
(k0 + k3) + k1r1 + k2r

2
1 = 0.

For the symmetry, we consider only the above case. We obtain the division
by zero calculus, first by setting r1 = 0, the next by setting r1 = 0 after
dividing by r1 and the last by setting r1 = 0 after dividing by r21,

g0 + g3 = 0,

g1 = 0,
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and
g2 = 0.

That is, (
x−

√
2rh− h2

)2
+ (y − h)2 = 0,(

x−
√

rh

2

)2

+

(
y −

(
r +

3h

4

))2

= r2 +
9

16
h2,

and (
x−

√
2rh
)2

+

(
y − h

2

)2

=

(
h

2

)2

.

The first equation represents one (
√
2rh− h2, h) of the points of intersec-

tion of the circle C and the chord t (see Figure 36). The second equation
expresses the red circle in the figure. The third equation expresses the circle
touching C externally, the x-axis and the extended chord t denoted by the
green circle in the figure. The last two circles are orthogonal to the circle
with center origin passing through the points of intersection of C and t.

C

t

Figure 37

Now for the beautiful identity in the lemma, for r1 = 0, we have, by the
division by zero,

1

0
+

1

r2
+

2

h
= 2

√
2r

0 · r2h
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and

r2 = −h

2
.

Here, the minus sigh will mean that the blue circle is attaching with the
circle C in the outside of the circle C; that is, we can consider that when
the circle C1 is reduced to the point (

√
2rh− h2, h), then the circle C2 is

suddenly changed to the blue circle and the beautiful identity is still valid.
Note, in particular, the blue circle is attaching with the circle C and the cord
t.

Meanwhile, for the curious red circle, we do not know its property, how-
ever, we know curiously that it is orthogonal with the circle with the center at
the origin and with radius

√
2rh passing through the points (±

√
2rh− h2, h).

This subsection is based on the paper [17].
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11 Conclusion

Apparently, the common sense on the division by zero with a long and mys-
terious history is wrong and our basic idea on the space around the point
at infinity is also wrong since Euclid. On the gradient or on derivatives we
have a great missing since tan(π/2) = 0. Our mathematics is also wrong in
elementary mathematics on the division by zero.

This book is an elementary mathematics on our division by zero as the
first publication of books for the topics. The contents have wide connections
to various fields beyond mathematics. The authors expect the readers write
some philosophy, papers and essays on the division by zero from this simple
source book.

The representations of the contents are very important and delicate with
delicate feelings to the division by zero with a long and mysterious history.
Therefore, we hope the representations of the division by zero as follows:

• Various book publications by many native languages and with the au-
thor’s idea and feelings.

• Some publications are like arts and some comic style books with pic-
tures.

• Some T shirts design, some pictures, monument design may be consid-
ered.

The authors above may be expected to contribute to our culture and
education. The topics will be interested in over 1000 millions people over the
world on the world history.

For the people having the interest on the above projects, we will send our
book source with many figure files.

The division by zero theory may be developed and expanded greatly.
We have to arrange globally our modern mathematics with our division

by zero in our undergraduate level.
We have to change our basic ideas for our space and world.
We have to change globally our textbooks and scientific books on the

division by zero.
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